TECHNICAL TIE 5-0021
INFORMATION December 22, 1964

EXCHANGE 190 pages

XT

IBM 1401, 1440 AND 1460 PROGRAMMING AND OPERATING
TECHNIQUES

Mr. Jack Melnick
150 Grand Street- Basement
White Plains, N.Y.

FOR IBM INTERNAL USE ONLY

This paper is in the author's original form.
The objective in providing this copy is to
keep you informed in your field of interest.
Please do not distribute this paper to persons
outside the Company.

Distributed by

DPD Program Information Department

IBM Corporation ' ‘
112 East Post Road TIE 5-0021
White Plains, New York

IBM 1401, 1440 and 1460 Programming and Operating Techniques

Page Kcy

of Pages

3 Unnumbered pages in front (title, disclaimer, abstract)
1 Contents

[Section A {A-1 thru A-3)
71 Section B (B-0 thru B-69)
13 Section C (C-1 thru C-13)
15 Section D (D-0 thru D-14)
10 Section E (E-0 thru E-9)
11 Section F (F-0 thru F-10)
7 Section G (G-0 thru G-6)
8 Section H (H-0 thru H-7)
23 Section I (I-0 thru I-22)
20 Section J (J-0 thru J-19)
188

IBM 1401, 1440 and 1460
PROGRAMMING AND OPERATING
TECHNIQUES

A. Elaine Taylor

Advisory Systems Specialist
150 Grand Street

White Plains, New York

Maurice D. Howe
Marketing Publications
Washington Ave. Lab
Dept. 293/Bldg. 630-1
Endicott, New York

Jack Melnick

Manager, Field Techniques Development Projects
150 Grand Street

White Plains, New York

August 18, 1964

o the best of our knowledge, the contents of our work entitled
"IBM 1401, 1440 and 1460 PROGRAMMING AND OPERATING
TECHNIQUES" is free of any proprietary, secretor confidential
information belonging tc a person or organization outside the IBM
company. Since this paper is a collection of techniques, we have
used the work of others and have obtained permission to do so,
where necessary.

A. Elaine Taylor Maurice D. Howe Jack Melnick

August 18, 1964

IBM 1401, 1440 and 1460
PROGRAMMING AND OPERATING

TECHNIQUES

This paper contains programming and operating tips for the IBM
1401, 1440 and 1460 Data Processing Systems, and is intended tc
supplement the System Operation Reference Manuals, Special
Features Marnuals, and cther manuals of the 1401/1440/14€0 SRL
series. These tips and pointers can be considered the 1400 Series
equivalent of the old unit record "Principles of Operation Bulletins".

8/18/64

Direct Inquiries to:

Jack Melnick

150 Grand Street

White Plains, New York
WH9-1900 X4517

OVERALL TABLE OF CONTENTS

Available Now

“HmQM BoOU owr

Future Sections

NECR

General System Techniques Information
Subroutines and Subroutine Techniques

CPU Operating Pointers and Miscellaneous
Error Indications

Reader/Punch Operating Pointers and Miscellaneous
Error Indications

Printer Operating Pointers and Miscellaneous
Error Indications

Branch Instruction Pointers

Add and Subtract Instruction Pointers

Multiply and Divide Instruction Pointers
Miscellaneous Operation Codes and I/0 Pointers
Magnetic Tape Considerations

Disk-File Programming Tips
Program Assembly Methods and Tips
Macro Library

Index

€Ay General System Techniques Information

Section Contents
A-1 Standard BCD Interchange Code
A-2 Word Mark Control in Data Movement

i

=

[S2\)

(A-1) Standard BCD Interchange Code

The Standard BCD Interchange Code defines for the IBM Corporation
a standard 64-character set for-the IBM 1401, 1440, 1410, 1460,
7040, and 7044 Data Processing Systems. The code provides compa-
tibility of data for interchange among all systems using this standard.
The standard provides a consistent definition of:

1. IBM Card Code

2. IBM BCD Magnetic Tape Code

Relation between these codes and printed symbols
(graphics)

Relation between these codes and machine control codes
Collating sequence of code elements

Two subsets of alternate graphics

oo

In addition, the standard provides uniform graphics for publications.
Existing published material will be changed to reflect the standard
BCD interchange code.

Figure A-1 is a chart of the standard BCD interchange code. Column
2 shows the graphics for the 64 code elements. The equivalent card
and BCD codes are shown by columns 3 and 4. The collating sequence
of the B4 code elements is indicated in column 1 by a collating number
which runs from 00 (low} to 63 (high).

1 2 3 4 . 5 § ' 7
Collating Graphics | Card Code BCD Code . Spec Sign, Char, at d IBM 1401
NMumber ; Op Code

B A 8 4 2 1 Branch /0

00 Blank No Punches No Bits . ! '

01 . 12 3 8 B A 8 1 . Halkt,

02 50 12 4 8 B A 8 4 : wr.w/m: Clear word mark.

03 C 12 5 8 B A 8 4 1

Q4 S 12 6 8 B A 8 4 2

05 I 2 127 8 B A 8 4 2 1 GM

Q6 &t 12 B _A

o7 T 11 3 8 B 8 9 1

08 LK 11 4 8 B 8 .4 Ing. Clear

co 1 1] 1 5 8 ‘B 8 4 1 ' !

0 L 11168 B 8 4 o 5

11 [a {1178 B 8 4 g 1 MC "

12 R 11 i B .

13 ! / 01 ! A 1 Unegq-Comp. ; Clear storage.
24 — 0. .38 1 A 8 2 1 ' Set word mark.
& 15 T (048 T A 8 4 Proc, Check i Divide
e LB X 0 58 N A 8 4 1 WS |

17 N 0 68 ! A 8 4 g —

18 L 0 78 ; A 8 4 9o 1 . SM ;

19 % 2 8 A ' SB !

20 F= 3.8 8 2 1 i Modify Address

21 @l i 4 8 8 4 carr, char. 12 : Multiply

22 H ; 5.8 8 4 1 '

23 > ; 6 8 8 4 9 :

24 £ ; 7.8 . 8 4 9 1 ™ ;

26 ? 112 0 B A 8 5 PZ RD I/O err.. ! Zero and add.

26 A S 12 1 B A 1 last card sw,/bin-decxdd Add,

27 B 12 2 ‘B A 2 ; sense sw. B/BSP tape ' Branch,

28 C 12 3 B A 2 1 sense sw. C/col. binary Compare,

29 D 12 4 ‘B A 4 sense sw, D’ Move digit only,

30 E, 12 5 B A 4 1 sense sw, E/skip+erase Edit,

31 F © 12 8 ‘B A 4 2 saise sw. F! - Carriage control.

.32 g 12 7 B A 4 9 1 . sense sw. G
Fiemre A-1

Standard BCD Interchange Code

1 2 1 3 4 5 | 6 7
Collating Graphies, Card Code ; BCD Code ‘ Spec. Sign. : Char. atd l IBM 1401
Number ! B A 8 4 | Branch [1/0O \ Op Code
i i e
33 H 112 8 iB A 8 rder busy ‘Store B-register
34 1 .12 9 ;B A 8 1 pch busy
35 | - 110 I'B 8 2 MZ .pch I/0 err, Zero and suttract
36 J t11 01 ‘B 1 tape or 1/0 busy
37 K S11 2 B 2 end of reel ; Stacker select
38 L C11 3 'B 2 1 tape error Load
39 M P11 4 B 4 ‘write T/M Move
40 N 1 5 B 4 1 _Bisk access inopy No operation
41 [¢) 11 86 B 4 2 :
42 P 11 7 B 4 2 1 printer busy Move record .
43 Q 11 8 B 8 ing, req. rd. pch. feédStore A-register
Z ‘ rwd. tape |
44 R (11 9 i B 8 1 carriage busy R
45 ES . 0 2 8 A 8 2 RM printer 1/0
46 S 0 2 A 2 eq. comp. Subtract
-y T 03 A 2 1 Tow comp. ,
™ 48 U 0 4 A 4 high comp. /rwd+unl tape Control unit
49 v 0 5 A 4 1 disk rd, bl. ck. Branch if zone or w/m
50 W o 8 A 4 2 ...disk wrong lgth, iBranch if bit equal
51 X c 7 A 4 2 1 “disk uneq, addr. "Expand compressed tape
52 Y 0_8 A 8 any disk error Move zone only
53 Z 0 92 A 8 1 arith of, Move & suppress zeros
54 0 0 8 2 1404 err/rd. 1404
55 1 1 1 : ‘Read a card
56 2 2 2 : Print
57 3 3 2 1 . Print and read
58 4 4 4 Punch
59 5 5 4 1 Read and punch
60 8 6 4 2 _Print and punch
61 7 7 4 2 1 'Print, read and punch
62 8 8 8 Start read feed
63 9 9 8 1 carr. char, #9 Start punch feed
Figure A-1

Standard BCD Interchange Code

(A-2) Word Mark Control in Data Movement

The function of the word mark is illustrated in Figure A-b. Opera-~
tion codes which either do not require word marks to end them, or
do not affect them, are not listed ¢such as clear storage, punch, set
word mark insiructions, ete.).

Word Mark Contro} in Pata Movement

Wi

A-field
Word mark
Transferred

Jnstruction | Word Mark Stops
i10p [Meemon| Function | Data transfed Data transfe 1 are erased
‘Code ¢ | ____._ only | and operation!
A A Adg A B None
8 8 Substract A B None
b [ZA Zero and A B None
. add
‘D ZS Zerc and A B None
o subtract
@ M Multiply B B(multiplier) None
% D Divide A None(sign of None
dividendy
c c Compare B B None
M [MCW Move Either Either None ;
{MLC : 4 ;
L .LCA Load A : A i Any in B-field
MLCWA
D MN Move Num None None None
s MLNS
Y MZ Move None None None
MLZS Zone
Z MCS3 Move and A A Any in B-field
Zero supp.
E MCE Move and A B Any in B-field
edit
P MCM Moverec- AforA¥ A%oral None
MRCM ord (from left to -
right)
MIZ Expand 3 A¥ None
{from left to
right) .
M RT Read tape IRG or ¥ in IRG NONE
"B
L RTW Read tape IRGor % in IRG B
B
M WT Write tape ¥ in B-field ¥ in B-field None
L WTW Write tape % in B-field ¥ in B-field None

Figure A-5

No
No
No
No

No.
No

No
No

Yes
No

No
No
No
No

IRG creates

(KX

Yes(from tape)

No
Yes(as Word
Separator char)
except

(B) Subroutines and Subroutine Techniques

Section Contents

Address Handling

B-1 Address Coding and Decoding

B-2 . Address Modification without Modify
Address Op. Code

B-3 AddressRegister Contents

B-4 Clear Storage following 1I/0 Commands

B-5 Conversion of 5-digit to 3-digit Addresses

B-8 Programmed "Wrap-Around"

B-7 Using Incoming Data to Modify Instructions

Halts

B-3 Double Identification Halts

B-2 Programmed Halt Numbering

B-2.1 Dead End Halts

B-19 Programmed Halt - Two Position

Loops

B-11 Iteration Controllers

B-12 Iteration - Counter Sign

Switches

B-13 Programmed Work Mark Switches
B-14 Programmed Character Switches
B-15 Branching Switches

B-0

g
®
[}

ot UL
NN g

=00k w

?’UJUJUUUJ o W
(o]

mww
0 09
oS o

(B

Section

Subroutines and Subroutine Techniques (cont'd.)

Contents

Table Operations

B-18
B-17
B-18
B-19
B-20
B-21

B-22

B-23
B-24
B-25
B-26

Table Look-up Programming

True Binary Table Search

Binary Table Search for Equals

Binary Table Search for Equal-High
Binary Table Search for Equal-Low
Binary Search for Tables in Descending
Sequence

Construction of Binary-Search Subsidiary
Tables

Direct Address Table Searching
Successive Table Searching

Special Table Searching

Table Search by Bracketing

Utility Type Operations

B-27 Clearing Storage between Limits
B-27.1 Clearing to Zero]
B-28 80 Column Card Reproduce Routine
B-28 30 Column Card Gang Punch

B-30 Relocatable Core Storage Print Out
Miscellaneous

B-31 Field Inversion Routines

B-32 Job Initialization Routines

B-33

Storage Locations 000 and 100

2

1
[e J 1)
SO

Twpw W wWwwwow

[
O: v N Oy an

oo w g
oIS Re

-

IBM

Locate on the hundreds axis the first character
of the coded addrest and the line in which it
appears and ot the tnits axis locate the lagt
chatacter of the coded address and the column
i which it appearse The subscript for each
character located is the numerical value for the
corresponding dddfess position and the point of
interiection {s the thousands designation. Thus
the machind=ctided addregs BPY is 72x8,
ndexing is ihdicated if the middle character of
the coded address is an alphabetic or special
one, Locate the chatacter in the character set
labeled hundreds; to the far left of that line is
the index locations BPY is location 7278 in-
dexed by locatioh 2. By reversing the proce-
dures, numerical addresses can be translated into
machine~coded addresses.

Additional examples: PYH= 14788 1;

5642 3=WDS; P19:2719 none; A6Z=7169 none;
15123 none=A2C; CC4=3334 3. .

(B-1) Address Coding and Decoding

1401/1440/1460 ADDRESS TRANSLATION CARD

EOO 1, 2:334,5:667; 849

?0 !o *o oo
AR
2 2
UNITS[¢ | (2 | T8 | 3,
Lel Dy | M, U, | 4,4
E, Neg V., 5S¢
Fe | Qs | We | 66
— HUNDREDS G, | Pr | X7 | 74
IND. l He Qs Yo 8,
L0¢ le | Re | Zo | 9
3|% A;B,C30, EgFg Gy Hg lg] 18xxx | Huxx | 7xxx | 3xxx
201y Jy Ko LyMyNgOg Py Qg Ro| 14 xxx [10 xxx | Exxx | 2xxx
1 |%0 /4 S2Ty Uy Vs We X7 Y Zg| 13xxx | Oxxx | Sxxx | 1xxx
No .
N 12 xxx | 8xxx | 4xxx| Oxxx

(B-2) Address Modification without the Modify Address Op Ceode

To increase any 1401/1440/1460 address, the Add Op may be used.

Set a word mark in the hundreds position of the address to be modified.
Convert the modification factor tc a 3-digit number: 1204 is actual
machine address S04. Add this 3-digit factor to the address to be
modified. Clear the Word Mark set in step 1. The resultant answer
will be a valid address. Remember, however, that an undetected
wrap-around may have occurred.

To decrease an address, convert the modification factor to the 16,000
complement, and use the Add Op. Thus: to decrease the address G867
(3767) by -003, convert address factor -003 to 15,987, This will be
actual machine address 19G. Add I93 to G67, and the result is G64
(3764). Arithmetic overflow controls the zone bits in the hundreds
position of the modified address.

Note that any indexing bits over the tens position of the B-field will be
stripped.

If indexing bits are present in the modification factor, they will be
ignored. I indexing bits are present in the original address to be
modified, they will be removed. If the indexing bits will be required,
they can be removed prior to the Add Op by a Move Zone to a save area
and replaced after the modification.

This method of address modification is not necessary for addresses over

4,000 since Modify Address is standard on machines with more than
4,000 positions of core storags.

(B-3} Address Register Contents

The original contents of the B-STAR (B-Storage Address Register) are
not disturbed when the A-STAR is read into, when using the following
op codes as single address instructions (op code and an A-address):

M Move characters to a word mark in either field.
L Load characters to the A-field word mark.

H Store B-STAR contents.

Q@ Store A-STAR contents.

The contents of the B-STAR are destroyed when the A-STAR is used
for the next op, except when chaining, using op codes only.

In machines having the Advanced Programming Feature, the contents
of the I-STAR will be transferred to the B-STAR, after any successful
branch op. The first instruction of the branched-to routine can then
be a Store B-STAR op (SBR), so that the address of the NSI (Next
Sequential Instruction) following the branch can be retained to provide
effective routine linkage.

(B-4) Clear Storage Following Print, Read, or Punch Operations

The print area in the 1401/60 is normally cleared as féllows:

Actual Mnemonic
2 w
/332 CS 332
/ CS

The print area can be cleared by using the print op code (2), followed
by two chained CS (Clear Storage) op codes, thus:

Actual Mnemonic
2 W
/ CSs
/ CS

At the end of the print op, the B-STAR will coriain address 335 or 333
if print storage is installed. By taking advantage of this fact, 3 core
positions can be saved every time the print area is to be cleared.

When this method is used, the program must originate at core location
336 or 334 with print storage, instead cf the usual 333. The program
may still start at location 333, if the instruction or constant at location
333 is to be used before the first print op, and never referred to again.

This method of clearing core may be used following other input/outout

op codes. Figure B-3 shows ending addresses after 1402/1403 operations.

I/00p . Inst. AX* B* B * with

print storage

Read 1 XXX 081
Rd/Br 1707 707 081
Print 2 XXX 335 333
Pr/Br 2 623 623 335 333
Pr/Wm 2% yyy 335 333
Pr/Wm/Br 2795 X 795 335 333
Pr/Rd 3 XK 081
Pr/Rd/Br 3 650 650 081
Punch 4 XXX 181
Pch/Br 4 925 928 181
Rd/Pch 5 pioie:d 181
Rd/Pch/Br 5 893 893 181
Pr/Pch 6 XXX 181
Pr/Pch/Br 6 724 724 181
Pr/Rd/Pch 7 XXX 181
Pr/Rd/Pch/Br 7392 392 181
Pfr 4R Yy 181
Pfr/Br 4 823R 823 181
Pfr/Pr/Br 6R ' ¥y 181
Pfr/Pr/Br 6 823R 823 181

xxx denotes previous setting of A-address register.
yyy denotes the d-character and blanks in the units and tens position.

Figure B-3
Ending Address After 1402/1403 Operations

B-5

(B~ 5) Conversion of 5-Digit Addresses to 3-Digit Addresses

Refer to program (Figure B-4). .

The first overflow gives an A-zone in the high order position of
HOLDAR (HOLDAR-4). This zone is determined by the two digits that
must fit in this one position as: 10is ¥ , and 19 is Z. As long as the
digit does not change by adding 96, no overflow is irdicated. When the
zone generated changes to a B-zone, overflow is indicated again. Thus,
addresses in the range 0-3999 cause no overflow and therefore no zone
in the units position of the address. The range 4000-7999, one over-
flow occurs giving an A-zone in the units position of the converted
address. In the range 2000-11999; two overflows; B-zone in the units
position. In the range 12000-15999; three overflows; AB-zone in the
units position.

This program (Figure B-4) requires very little storage and is easy
to program and to understand. It can be used in any application where
address conversion is necessary.

Step Number Label Op Operand Comments

1 CNVTO3 EAV *+001 Reset overflow
2 A @96@, HOLDAR-003 Cenerate 1-3 overflows
3 BAV CNVTO3+005
4 MZ HOLDAR-004, HOLDAR #5 Overflow to zone units pos.
5 MN HOLDAR-003, *+004 Move digit (8, 7, 8, 9)
6 Mz ZONE, HOLDAR-002 Move corresponding zone to hundreds
. ORG %09 position.
ZONE DCW Q25KBO
These statements might assemble as:
Step Number INST ADD INSTRUCTION COMMENTS
1 601 B 6068 Z Reset Overflow Indicator
2 606 A 702 802 Generate 1 to 3 overflows,
3 613 B 608 Z Branch to add Op if overflow,
w 4 618 Y 801 805 Use overflow for units sign.
4 5 825 D 802 835 Move digit (6, 7, 8, or 9).
6 832 Y 909 803 Move corresponding zone to hundreds positon,
839 NSI '
DCW's
Units Factor Comments
Add,
702 96 Alpha Literal.
805 Q0000 5 position hold area into which the address
to be converted is program-loaded.
909 28KB Literal located so that the zones can be used.

Units position (B) must be in location ending in.nine

Figure B-4 Address Conversion Routine,

Step b Step 6
HOLDAR, Step 2 Step 3 Step 4 gives zone Result NSI
Address]
00100 +06 = 96100 No ovil 96100 208 Blank 96100 or 100
01Q00 +96 = 97000 Noovfl 97100 907 A-Zone 97#00 or 100
03000 +96 = 99000 No ovil. 99100 909 AB-Zone 99600 or $00 Cod
04000 +96 = 10000 Ovfl i
I\ +96 = Z6000 No ovfl Z600 206 Blank zone Z600# or 00|
o+ 1
iwooo +06 = 13000 Ovil .
i +96 = Z9000 Noovil 2900 * 909 AB-Zone 2900 or 00~
W
1 n
o | !
08000 +96 = 4000 Oovfl ;
+96 =B0000 Ovil R
+96 = R6000 No ovil RB000 906 Blank zone R6000 or 000
11000 +96 = 17000 ovfl
+96 = V3000 Ovfl _ :
+96 = R9000 No ovil R900T 909 AB-Zone RI000 or HOT
12000 +96 = 8000 Ovfl
. +96 = P4000 Ovfl
: +08 = 00000 ovfl _
i +96 = 16000 No ovfl 16008 906 Blank zone 16006 or 008
v
15000 +96 = /1000 Ovil
i +06 = 7000 ovtl
| +06 = 03000 Ovfl oA
! +96 = 19000 Noovfl 19000 909 AB-Zone 190000r 508

Figure B-5 Function of Address Conversion Subroutine

(B-8) Programmed "Wrap-Around"

If storage location 000 is addressed with any instruction that
decrements an A- or B-address register, the processing system
will wrap-around to its high-core storage address (3992, 7999,
11999 or 15, 999).

To determine the core storage size of a particular machine as the
program is being run, use the Clear Storage (/) op, followed
immediately by the Store B-Register (H) op, thus:

cs O
SBR AAA

The object machine storage size will be stored in the core location
represented by the notation (AAA). The clear storage instruction
does not cause a wrap-around error.

Do not attempt to address storage location 15, 999 (or maximum
storage location of your particular system), with any oo code which
increments the A- or B-address, since the system will wrap-around
to its low-core storage address (000).

The op codes which will cause this error are the Move Record Op,

or any of the serial ops, such as magnetic tape, serial 1/0, serial
readers, etc.

B-9

(B-7) Using Incoming Data to Modify Instructions

Techniques to use incoming data to directly modify instructions, as
opposed to the more standard approach of testing, branching, and use
of subroutines, follow:

1.

Consider, for example, a program in which a transaction or
accounting code on data documents is to affect one of a series

of accumulators. The thirty-six codes are the single characters,
letters A through Z, and the digits 0-9, in this sequence.

Assign ten position accumulators, of which there will be thirty-
six, with units positions in core locations 3649, 3659, etc. up

to 3999. Now rather than testing for each code individually,
use one instruction (the object instruction) and modify its B-
operand, which specifies the location to be changed. Note that
the numeric values of each transaction code, (the letters A-I),
correspond to the relative sequence of the accumulator which
they are to affect. The same is true for letters J-R if the value
of 9 is added, for the letters S-Z if the value of 17 is added, and
for the numbers zero to nine if 27 is added. These would be the
base numbers to which would be added the digital value of the
code character.

Code Character Base + Digit Accumulator
Sequence

A=) 0+1 =1
1=1(9) 0+9 =8
J=(1) 9+1 =10
R=(9 T9+9 =18
S=(2 17+ 2 =19
Z=1(9) ‘ 17 +9 =26

0 =(0) 27+ 0 =27

9 =(9) 27+9 =36

B-10

Programming can take direct advantage of this logical relation-
ship. The routine (Figure B-6) would consist of instructions

to analyze the zone structure of the transaction code, branching

to add the corresponding zone value to the tens position of a
three-position constant, which has the initial value of machine
address 3639. The numeric portion of the code is then added to the
tens position of the constant so that the resulting value which

will be in increments of ten is one of thirty-six machine addresses,
the units position of the correct accumulator. The constant then
replaces the B-operand. Total core requirements are 105 loca-
tions, in contrast to 684, using standard programming.

BWZ

BWZ

BWZ

OBJECT A
MCW
TO MAIN ROUTINE

ADD 9

ADD 17

ADD 27

w o> w o> w >

A-ADDR

ADD 9

ADD 17

ADD 27

BLANK

CODE

WKAREA
AMOUNT

RESET

NUM ¢
RETURN
NUM 17
RETURN

NUM 27

RETURN+007

Figure B-6.1

B-ADDR

CODE

CODE

CODE

CODE

WKAREA-001

OBJECT+008

0000

WKAREA

WKAREA-001

WKAREA-001

WKAREA-001

Transaction Code Test

CK Eleven
Zone

CK Zero
Zone

CK No
Zone

Dezone
Numerie

Add
Numeric

SIZE
03
03
02
02
02

01

LABEL
WKAREA
RESET
NUM 9
NUM 17
NUM 27
BLANK
CODE

AMOUNT

OoP

DCW
DCW
DCW
DCW
DCW
DCW
DS

DS

*

*

0070
0060

Figure B-6. 1 (cont'd)
Transaction Code Test

F39

F39
09
17

27

For areas of different size, for example, seven positions, the
sum of the zone and underpunch might be expanded seven times
by successive addition and subtraction, with modification then
taking place at the units position of the operand (or index register,
if available). Total core requirements are approximately 146
with this technique as opposed to 684.

Consider another situation of just six accumulating areas. Each
incoming code may add to, subtract from, or bypass an area;
any code affects on the average, half of the accumulators. The
solution here could result in one object instruction for each area,
with data analyzing instructions choosing the operation codes in
advance.

Each code would have an associated six-position constant, con-
taining the required machine language op codes in sequence.
After the location of these constants has been assigned, the data
code is used to develop the machine address of the correct
constant. Other instructions insert the op codes from the con-
stant to the six object instructions. The A-operand of the first
instruction contains the address of the selected DCW (Figure
B-7.2)

LABEL OopP A-ADDR B-ADDR COMMENTS

OBJECT MCW 0000 AREAX

MCW AREAX-005 INSTRA INSTRA
through
MCW AREAX-004 INSTRB INSTREF are
the six object
MCW AREAX-003 INSTRC instructions.
MCW AREAX-002 INSTRD
MCW AREAX-001 INSTRE
MCW AREAX INSTRF
06 DCW *ASNNAN Typical DCW
with six
08 DCW *NNSSAN . machine lang.
op codes
3¢ AREAX DCW *
Figure B-7.2

Op Code Insertion

Storage locations in this example are approximately 125 for instructions,
230 fcr constants for a total of 365, Standard programming, involving
one test, three arithmetic and one branch instruction for each of thirty-
six codes, would be about 1200 .positions. Of course, the constant could
contain any element, or combination of elements, that could comprise
an instruction.

(B-8) Double Identification Halts

Often it is useful to program halt ops to serve multiple functions. For
instance, a program might contain a halt #1111 to tell the operator to
insert a tax year in a particular storage location, such as: H 1111,
TXYR, where the label TXYR will refer to the units position of the tax
year field in the assembled program. This instruction might appear in
the post list as: . /11 908.

{(B-9) Programmed Halt Numbering

Standardization of programmed halt numbering facilitates job operations.

By using specific halt numbers for specific halt conditions, program
coding and job operation is simplified. The halt instruction can be used
to indicate common halt conditions, such as: out-of-sequence, tape
error, reader erros, end-of-job, etc.

Halt 25
Positions Instructions

1 H

2 H2

3 NOP 2
H

4 H 222

5 NOP 222
H

7 H 111 222

The 2 and 3 position halt instruction provides one position for halt
indications, while the 5 and 7 position halt instruction provide three
positions. In the case of the 1, 2, 3,5 and 7 position halts, the NSI will
be executed when the start key is pressed. The 4 position halt will cause
a branch to the location in the A-STAR.

(B-9. 1)Dead-End Halts

Some error conditions-demand that the application in progress be
terminated. It will have been determined beforehand that further
attempts to process will be useless. Typical examples of this follows:

FATAL H FATAL (The address of the label
FATAL can be standard-
ized for all programs.)

(B4t Programmed Halt, Two-Position

The 2-position halt instruction has the same characteristics as the
seven position halt; the operand is displayed in both the A- and B-
address registers. When the start key is pressed, the next sequential
instruction will be executed. Five core storage positions are saved.
It is coded as follows:

HALT9 H

DC @%@
or:
HALT9 DCW @.9@

Note:

When using this technique, the digit modifier will be dropped when
assembling is done with autocoder, if written in symbolic SPS format.
Therefore, it should be coded in actual (. 9).

LABEL Op A-Add B-Add 4 Count COMMENTS
(B-11) Iteration Controllers
Follow steps of
. subroutine,
Three methods of counting iterations (repetitive operations}) are:
ADDITR A ADDITR COUNT 7 UsesADDITR Op
1. Branch if Character Equal for constant.
2. Compare
3. Rotary Switch B RESET COUNT d 8 d-modifier any plus-
zoned character.
The Branch if Character Equal method (Figure B-8) is limited to a
meximum of 10 iterations, but has the advantage of using a minimum B SUBROU 4 Branch back to
amount of core. It is easily modified if iteration control is to vary subroutine.
during the job
RESET ZA RESET COUNT 7 Uses ZA Op as DCW
A variation of the Branch if Character Equal method can be used to count R
iterations over 10, by first branching on a specific character in the B NSI 4 Branct. out of
i3's (hundreds or thousands, etc.) position of the count field. When subroutine,
this test is positive, modify the Branch if Character Equal instruction
to test the next lower digit of the count field. Usually, both the d- COUNT DCW * 40 __ 1 Must be plus zero.

modifier and the B- {testing) address will have to be changed. The Total Positions 31

final test positive will provide a branch to the RESET sub-subroutine,

and a branch out of the subroutine to the NSIL.

. Figure B-8 Branch if character Equal lteration Control Subroutine,
The Compare Op method (Figure B-9) can be used in any general
iteration count. It is easy to program, but is more expensive of core
storage than the previous methed.

The Rotary Switch method (Figure B-10)ises less core than the compare
equal method for iteration counts of 2 to 8.

Any of these count-subroutines can be used wherever a specific or
program-alterable count device is required, such as tape blocking,
table lookup, multiply subroutines, etc.

ILABEL Op_ A-Add B-Add d Count _COMMENTS
ADDITR A ADDITR COUNT 7 " Uses Op-code for
constant,
C CONSTN COUNT 7 Compare constant
factor to count.
B RESET S 5 Branch if compare
equal.
B SUBROU 4 Branch back to
subroutine,
RESET ZA RESET COUNT 7 Uses ZA Op-code
for constant.
B NSI 4 Branch out of
subroutine,
COUNT DCW * 000 ete, n Must be zoned plus,
n positions long.
CONSTN DCW * 000 etc. Same length as COUNT.

_n__
Total: 34 plus 2n

Figure B-9 Compare Equal Iteration Control Subroutine,

IABEL Op_ A-Add B-Add COUNT COMMENTS
Follows steps of
subroutine,

STEP 1 MCW LABELC-1 LABEILC .7 Off sets constant

’ (LABELC)

STEP 2 MCW LABELA LABEIB 7 Inserts B-Op in
constant.,

STEP 3 MCW LABELC LABELA 7 Inserts N-Op in
branch-out {LABELA)

LABEIA B NSI 4 Branch out of
subroutine.

B SUBROU 4 Branch back to
subroutine,
Total Positions: 29

LABEIB NOP 1

LABELC DC *NNN etc, n Any number of "N's"
1 or over,

NOTE: In addition to the instructions, you must consider LABEL B (1 position)
and at least one "N" required for the constant (LABEL C). Actual
total for this subroutine will then be 29 plus 1plus n (at least 31).

Figure B-10 Rotary Switch Iteration Control Subroutine.

B-22

Figure B-11illustrates the status of LABELA, LABELB and LABELC

'

; "LABEL
5 DASS STEP LABEIA | . B. LABELC
i # # Op CONTS | CONTENTS
1 1 B N NNN
2 B B NNN
, v - N B NNN
e f*f x| B aw
f 2 N N BNN
, 3 N N BNN
o 3 = 1 N | N | wen
' 2 N N NBN
3 N N NBN
= - . T R
2 N N, NNB
ﬁ 3 B N | NNB
o 5 1 B N NNN
ete, 2 B B NNN

i

Figure B-11Status of LABELA, LABELB and LABELC in the Rotary Switch
Method of Iteration Control.

The subroutine would have branched to the address indicated here by NSI
after pass 4, and would not have branched again until after 4 passes through
thr routine, once this routine was entered.

This method of iteration control can be used for any type of count. It can
be expanded to use any base, A DC (LABELC) of 2 N's will provide a count
of 3, while a DC of 7 N's will provide a count of 8 iterations.

{B-12) Iteration-Counter Sign

1.

Place a negative amount in the counter, and add one each time
the routine is performed. When the counter reaches zero, test
for a minus zero (0} by using the Branch If Character Equal
instruction -- B (III) (BBB) O .

Same situation, but look for the sign change to plus by using
branch if word mark or zone, BWZ (III) (BBB) B. This method
may be used for any sized counter.

A counter can be worked in reverse by using a positive amount
in the counter, subtracting 1 and testing for (®). In the second
situation, look for the sign change to minus.

A single position counter can be used for a count of 19 or less.
For example, starting with -9 in the counter and testing for
+9 {I} with the branch if character equal instruction.

i

(B-13) Programmed Word Mark Switches

Programmed switches can be an aid to subroutine selection. Basically,

a programmed switch is a function that can be conditioned at one point a.
in a program, to cause selection of alternate paths later on in the
program.

Three steps in use of switch are:

1. Turning the switch on - SW 081
2. Testing the switch - BWZ III, 081, 1
3. Turning the switch off - CW 081

Cne method of effecting programmed switching involves the use of
word marks (Figure B-12).

b.
o s .. Yesi , .
! ' . ! ~~Man™ { Set W/ Main
Imitialize™ "> Read ‘—_)‘\NO-G,‘}?—% in 081 1 i
. pa— y3 . J S
H No C.
e) . R
(Punch -
i ppreeenim
Do R |
Clear &~ Main €~ i 0817< “Routine 2K 11 0517~
W/M in O : . : o
Routine 3 - g
e e ~— ! Yes ! Yes
Lo — —_—
J— Subroutj.nQJ L__Subrout'm;ei
B A
Figurs B-12
Programmed Switching, Using
Word Marks
081 DC #1
TEST BWZ I, 081, 1
TURNON SW 081
TURNOF CW 081 17 positions

B-25

(B-14) Programmed Character Switches

Branch if Character Equal

1. One core location can be used for more than one "switch™
condition. Thus, if one condition is met, set a WM. If
another condition is met, insert yet another character,
etc. The core position can then denote presence of a
name and address card, (WM), and presence of YTD card
(particular character, say a Y).

2. A core position can store any of the many zone and/or
WM conditions. These can then be tested with the Branch
if Character Equal and Branch if Word Mark or Zone
instructions.

Insert another Op-code to modify the program. A subroutine
might change a NO Op to a Branch Op, then a N OP. (Figure
B-13).

Change the d-modifier. Cause a branch ~n another sense
switch, to another carriage tape channel, or branch on another
I/0 error condition by altering the structure of the d-modifier.

{B-15) Branching Switches

The BRANCH IF INDICATOR, ON instruction (B III d) may be
used effectively for program switching by using an unused

1.

- es_i Replace
—k"ﬂN > No% in Sv'v

! “No. =6 i1 & Sw2

N Wl H

i No H

g |
}

Initialize -

&

egieed [N G

lRou’cme- 3 <

op | 7o
}on(B) !

. 1 Sub- ;
- H

" routine
L

Figure B-13
Programmed Switching, Using
Op Code Alternation

SW1

MCW
MCW

TURNOF
TURNON

@O
B3
=2

20 positions

B-27

Main ! d-modifier (B I ™ for example).
Routine 1;

T

lRoutme 2 ;g—<swl >

i on (B)

To set the switch, simply
set a word mark under the %" d-modifier. This makes the
instruction an unconditional branch. To reset the switch,
clear the word mark from under the d-modifier. Since the
1401 has no ¥ branch d-modifier, the instruction will cause
no action, and become effectively a no operation instruction.
The program will continue to the next sequential instruction.

Label Op.

BIN

SW

CwW

Operand
ON, =

SW1 +4

SW1

SW1+4
13 positions

This switching method takes four less core storage positions
than the conventional method of testing for the presence of a
word mark.

CAUTION

If machine specifications are altered, what was once an
unused d-modifier, may become used. This requires a
‘review of all cases where this switch technique was used.

A similar approach would be:

NOP
B XXX
OFF (N B XXX} ON (N B XXX)
By removing or placing a word mark under the B makes this
- a five position NOP instruction or (a one position NOP followed
by) an unconditional branch. The same amount of memory-is
saved, as above; however, it is slightly slower in execution
time but safer from the sténdpdint of changing d-modifiers.

B-28

3. Anotlier way to program the branch switch would be:
Label Op_ Operand

TURNCN SW SW1l+4

SW1 ' BIN TURNOF, M

TURN Or MCE
10 positions
The WM on the d-modifier in the branch instruction will be

cleared by the edit instruction, if it is the first instruction in
the "TURNOZ" routine.

(B-16) Table Look-Up Programming

The object of table look-up is to find, from a group of table arguments,
an item that equals (or in some cases approximates) the known search
arqument. The table functions (associated data) of table arguments can
be located attendant to the argument, or a fixed number of positions away
from the actual arqument. Modifying the address of the location of the
table arqument will result in obtaining the location of its related function.
Generally, some effort will be made prior to the actual search to
determine whether or not the search arqument lies within the limits of
the table argquments.

Tables take many forms. = They may be arranged sequentially in ascend-
ing or descending order. They may be arranged non-sequentially, with
the high activity items appearing first in . order by activity) followed by
items with less activity. They may be arranged-in random order, with
access to the table arquments based on an address included in the input
media. The nature of the application involved tequal hit, interpolation,
ete.) will dictate the table design. In any event, table searching can
readily be programmed on most data processind systems. ’

(B-17}) True Binary Table Search

I3

Table look-up becomes very time-consuming when directed at large
tables or when long functions must be interspersed between the table
arguments. No other programmed table look-up can completely search
an crdered table in as few searches as the binary search.

The true binary search described here was developed for a situation
where it was impossible to include the word marks needed by the table
lock-up instruction. It will completely search any size sequential table
or group of records in a minimum number of comparisons, but does not
require a great deal of storage for the program itself,

Theory of Binary Searching

Using & table that is either in ascending or descending sequence, it is

possible 1o compare a search argument against the center table argu-

ment. I they are equal, the search is alrsady finished. Otherwise the
result of the comparison tells in which half of the table the desired

argument may i>2 ound. A second comparison at the center on one of
the halves can further tell which quarter of the original table might
contain it. This procsdure can be repeated as long as it is possible to
subdivide whatever portion ¢f the table remains.

Obvizusly, a table that can ve repeatedly divided in half until only one
logical entry is left must in itself be related to some power of 2. It
must in fact contain a total of entries equal to one less than some vower
of 2 in order to simulate a "look-up equal” operation and exactly some
cower of 2 for "look-un equal-Ligh" or "look-up equal-low".

The following table illustrates the application of a binary table:

Position in

Table Argument Function
i 01y 9463001
2 027 1004076
3 NEE 3472300
4 094 6875679
5 123 4221842
6 148 3884468

B-31

Position in

Table Ar ent Function
7 159 5123779
8 177 6897212
9 200 2011897
10 261 3675774
11 283 2001480
12 694 75815631
13 . 733 0175000
14 748 6361792
15 999 Sdeokokkokkk

The table consists of 15 entries in ascending sequence. Each entry
contains ten digits; three for the argument which is the field against
which we must make our comparisons and seven for the function. The
other element is the search argument which must match exactly with one
of the table arguments.

To search this table by the binary method, the program must compare
the search argument against the table argument of the eighth entry.

If an equal condition results, the desired item has been found and the
search terminates. However, if the search argument is low, the item
must be among entries 1-7 of the table, and if high, it has to be in the
upper seven entries (9-15). The next comparison is made on the item
which is the next lower power of two entries away from the previously
compared item. Thus, we must look at entry 4 (low) or entry 12 (high).
Successive comparisons are then made which always reduce the number
of possibilities by half until only one entry remains. If that entry is not
equal to the search argument, it means that the argument is not in the
table.

The course taken by the search is best demonstrated by using an actual
input argument such as 123. This is initially compared against item
#3 (177) and found to be low. The next comparison against the center
item of the lower half of the table, item #4 (094), results in a high
condition causing the search to move upward to item #6 {(148). The

low indication at this noint means that only one possibility remains,
item #5 (123), which in this case satisfies the equal condition desired.

B-32

To completely search a 15 item table such as the one on the previous L equals the length of the table argument, plus the functions. This

page requires a maximum of only four comparisons. Note that the totals 10 digits in the previous example. After the initial comparison
average number of comparisons is somewhat below this because if an has beenmade at the table's center, the value 40 is added to the
equal condition results at some earlier point, no further comparisons compare address if the result were high (subtracted if low). In this
are necessary. manner the programmed loop can accomplish the search. The program
is controlled by the subsidiary table. By changing its values, the same
As a binary table increases in size to one itern less than higher powers program can operate on tables with different sized entries or, by adding
of 2, the number of comparisons needed for a complete search becomes more values at the beginning (80; 160, etc.), upon larger binary tables.
lower in relation to the size of the table. Thus the numbers of iterations
needed for various larger tables are: Any sequential table of any size can be made up of two overlapping binary
tables of the next lower power of two minus one. Consider the following
No. of Items Maximum No. of table of 25 items (an extension of the binary table of 15 items):
In Table Comparisons
—_— Position In :
31 5 Table Ar ent Function
63 8
. 127 7 1 015 9463001
255 8 2 027 1004076
511 9 3 066 ete.
1023 10 4 094
5 123
(] 148
The value of the binary table lies in the fact that it is perfectly sym- Lower 7 159
metrical. Each successive comparison must move to a point higher Binary 8 177
or lower on the table which is exactly half the distance traveled by Table 9 200
the previous comparison. When this distance has been reduced to the 1-15 o _ . _ __21_
length of one item, the search is complete. 1l 283\
12 694
This type of table organization lends itself to computer programming 13 733
in that a simple loop containing just one compare instruction, one of 14 746
whose addresses is continually modified, can perform the whole search. : _1§ I -
A small subsidiary table contains values for each iteration equal to 16 762
table address compared against at that point of the search. It must Upper 17 795
terminate with some indicator which tells the program that the last Binary 18 796
iteration has been completed. . Table 19 811
11-25 20 853
For the 15-item table described, the subsidiary table would look like 21 866
this: . 22 904
23 913
4XL=40 24) 957
2XL=20 25 999
1XL=10
End = %¥

B-33 _ ' B-34

It can be seen that this table may be thought of as one 15-item binary
table of entries 1-15 and a second one consisting of entries 11-25.

The only difference between searching this table and a straight binary
table is that an initial comparison at the table's center (item #13 in this
case) must force the program to search either the upper or lower table.
The identical routine described can successfully search this unsymmetri-
cal table. The only change is in the subsidiary table which controls the
operation. Here one additional value must be placed at the beginning
which will modify the address at item #13 to go next to either items

#8 or #18 (the center points of the two binary sub-tables). The subsi-
diary control table would then appear as:

5X L =50
4X L=40
2% L=20
1XL=10
End = **

This method is valid for an equal search through any table having an
odd number of entries. To handle an even number of entries requires
a slight change because the initial distances moved (up or down) after
the first comparison would not be the same. This is accomplished by
creating twe subsidiary tables instead of one. The increment table is
referred to if the result of a comparison is high, the decrement table
if low. If the original table were increased to 26 items, the subsidiary
tables would appear as follows:

Increment Table Decrement Table
60 50
40 40
20 20
10 10
% Hk

The initial comparison could still be made against item #13, but if the
result were high, the next comparison should be made against item
#19 which is now the center of the binary sub-table extending from

item #12 to #26. Having the two subsidiary tables forces this sequence
of operations. Note that this example requires a maximum of five -
comparisons, the number equal to the exponent of the next power of 2
which is greater than the number of items in the table.

Exactly the same routines can search for an equal argument in any

size of table by adding more values to the subsidiary table {s}. In this
manner a table of as much as 2000 entries, for example, may be
completely searched by comparing against only eleven (or less) of these
entries.

(B-18) Programming Example of Binary Table Search for Equals

Care should be taken if the total length of the table exceeds 999 charac~
ters, that module 16 complements are used for the negative values in
the subsidiary table: LOTBL. I the table exceeds 1999 characters,
the constant: MIDPT, and possibly some of the positive values: HITBL
must be given their three-position equivalents. The program steps
need not be changed.

’

Figure B-14 represents a logic diagram of a binary table search.

Figure B-15 illustrates the basic autocoder statements required for a
binary table search.

B-36

No

Enter Initlalize”
Table —-c—> 1:: c(f;ftfgarq
Searcri“ . -of table
)
mitidlize"
to add 1st
increment or
decrement
.)} o
eS-.. - Item
Searcharg,= _ Yes _y Found
table arg.” "I Routine
"2 o
: No | I
g I8 Add next
/inerement toc_ Yes,.Search arg, N alue from :
T 7 >“decrement :
ioate table arg. \ to compare
address . ? ogompar
,‘_ e e e s . j
?rep:é,re to
add next in-
crement or
decrement
«\ .
End ;
of increment ;
table?
Yes -
‘Ttem r;ot found } Leave
routine (high—-——- oo ;% Table
or low) ‘ Search
Figure B-14
Logic Diagram of Binary Table
Search

* Binary Search Programming Example

START ZA MIDPT, X1 Initialize to middle item in
table
ZA &0, X2 Zero X2
COMP C TBARG&X1, Compare Search argument
INARG to table
BH UPPER Branch to go higher in table
BE FOUND Branch if exact match
A LOTBL &X2,X1 Go lower in table
B ADDX2
UPPER A HITBL&X2, X1 Go higher in table
ADDX2 A &3, X2 UP X2 for next value in
subsidiary tables
BW COMP, HITBL Test for end of subsidiary
-2&X2 table
NOFIND ———- If branch on word mark not taken, item was
not found.
FOUND ———- Begin processing found item at this point.
* Whenever an equal argument has been found, index register 1
* contains the high-order relative address of the found table item
* which may be processed as required.
*
* Data areas needed
TABLE DA 10X26 Table area of 26 items of 10
char. each
TBARG 1,3 Table argument
TFUNC 7,10 Table function
INPUT DA 1X80, G Sample input area
INARG 17,19 Search argument

* Subsidiary tables to control an equal only search of a 26 item
* table containing 3 digit arguments and 7 digit functions.

*

LOTBL DCW -050 -
-040
-020
-010

HITBL DCW &060

Pigure B-15

5 items lower in table
4
2
1
6

items higher

Autocode;'];’rogra.m Segment of
Binary Table Search

B-38

&040 4
&020 2
&010 1
DC oe Lack of word mark here terminates
search.

* Constant to initialize X1 to middle item of table.

MIDPT DCW &120

Figure B-15 (cont'd.)
Autocoder Program Segment of Binary
Table Search

{B-19 Binary Search for Equal-High

To simulate a "look-up equal-high" operation, only a small change in
the interpretation of the table is required. The principal difference

is that the ideal size table for this operation exactly equals some power
of 2, rather than containing one item less. Recall that the chief virtue
of the binary table is the fact that it is perfectly symmetrical for pur-
poses of the search. Note that there is a subtle difference between an
equal look-up and one for equal-high.

In the search for equal, each comparison eliminates one possibility,
i.e., the item just compared. The two remaining halves of the table
or sub-table must be of equal lengths. For this reason the comparison
at the center point of the table or a sub-table must be at the center of
a group that is one less item than some power of 2.

When the search is for equal or high, the item just compared is not
necessarily eliminated from the search. A low result does not indicate
that the desired table argument has been found until further compari-
sons have proven that the next lower item in the table is lower than the
search argument.

Because the subsequent comparisons in the lower or upper halves of
the table must take the identical course, and the item just compared
must still be taken into consideration as an entry in the lower half, the
table itself must contain a number of items exactly equal to some power
of 2. .

Although this difference exists, the logic of the search is unchanged.
The only thing that must be altered is the pcints ‘n the table where
comparisons are made. This entails placing different values in the
subsidiary control tables. The example of a 26-entry table (discussed
in the previous section) was thought of as two overlapping binary tables
of 15 items each (items 1-15 and 12-26) {for an equal search). To
perform a "look-up equal-high" requires it to be thought of as two
tables of 16 items each (items 1-16 and 11-26). After a comparison
against the center item resulting in the search argument being found
low, the next comparison would be made against item #8 in either
case. However, if the result were high, the equal search would next
look at item #19 whereas the equal-high search would be to item #18.

The logic and programming are almost identical for both an equal and
equal-high search. The only difference is that the test for equal must
branch to what was previously the "not found" routine. "Found" and
"mot found" are, therefore, synonymous for anything but an equal
search. The reason for this is that there is no such thing as a "not
found" condition following an equal-high search. The program must
always find something, which generally means that the last item in the
table should be a pad of 9's or some other unique indicator.

The subsidiary tables to control the equal-high search on the same 26
item table would appear like this:

LOTBL DCW - 050 HITBL DCW + 050
- 040 + 040
- 020 + 020
- 010 + 010
- 000 + 010
DC 2@

Note that these tables each contain one more entry than the correspond-
ing tables for an equal search. If, on the last iteration of an equal-

high search, the search arqument is found to be low, the proper "higher
than" item is the one just compared. If the search argument is high,

the next higher item in the table is the one desired. Therefore, after
the final comparison, a low result leaves the table argument's address
unchanged (LOTBL entry -000), but a high result causes it to be adjusted
upward by one item (HITBL entry +010).

If a search for an argument just lower than the highest item in the table
is followed through, this final table arqument is never actually compared
in the example given. It is assumed to be the desired item if the search
argument is greater than the next-to-last item. For this reason, it is
best to tag this last itern with some special indicator (such as 9's), which
can be identified by the program.

The search for equal-high takes the same maximum number of com-

parisons as the search for equal. However, in many applications the
equal condition (the only condition that can stop the iterations before

maximum) occurs only rarely while looking for equal-high. Here the
average number of comparisons per search would be nearly the same
as the maximum.

B-41

(B-20) Binary Search for Equal-Low

A slightly different situation exists when the search requires a table
argument that is either equal to, or the next lower value than, the
search argument. Again, the subsidiary control tables must be
altered, with no change in the program instructions.

The difference is that comparisons to every level of a binary table or
sub-table are made against the left-of-center item for an equal-high
search and against the right-of-center item during an equal-low search.
If it is lower (search arqument high), the desired item belongs to the
upper half. The situation is reversed in a search for equal-low where
the significant point of comparison is at the lowest item in the upper half
of the table segment. When the search argument is low or equal, the
search continues in the upper half. If high, the search must shift down
to the lower half. This reasoning is valid if the table contains entries
totaling any power of 2 (or 2 itself, where the comparison pinpoints the
proper item, which is what happens on the final iteration of the sample
program).

To cause the same sample program to follow the desired sequence of
comparisons for the equal-low search on the 28-item table, the follow-
ing subsidiary control tables would be employed.

LOTBL DCW - 040 HITBL DCW + 060
- 040 + 040
- 020 . +020
- 010 + 010
- 010 + 000
e

In this example, the initial comparison is still being made against item
#13 (MIDPT equais +120). The point of initial comparison is not fixed
on one particular item, but on any of those that are part of the over-
lapping portion of the two binary sub-tables, provided the first incre-
ments in the subsidiary tables are adjusted accordingly. Thus, if
MIDPT were made +130 (to compare first against item #14), the first
entries in the two subsidiary tables would be -050 and +050 (for a 26-
item table).

B-42

The egqual-low search requires a special test character in the lowest
(left-most) position of the table. The program arrives at this entry
without comparing against it if all other items have been found to be
higher than the search argument. It can contain asterisks or some
other indication that may be tested by the program.

Timing for an equal-low search is the same as for equal-high.

B-43

(B-21) Binary Search for Tables in Descending Sequence

Tables arranged in a descending sequence may be searcted by the same
program by changing the points of comparison so that they are oriented
toward the right end of the table in the manner that the ascending
table's points are oriented toward the left end. When the result of any
one comparison indicates that the next point should be higher in the
table {at some higher table argument), the address of this point is
arrived at by decrementing the current address. This means that if
the initial point of comparison is moved one item to the right, just by
changing the signs on the values in the increment and decrement sub-
sidiary tables, a search of an ascending table can apply to the same
size descending table,

To continue with the sample table of 26 items used in previous illustra-
tions, the three types of look-up when applied to descending tables would
require the following subsidiary tables (MIDPT is +130 or item #14).

Look-Up Equal
LOTBL DCwW +050 HITBL DCW -080
+ 040 - 040
+ 020 - 020
+ 010 - 010
DC ae
Look-Up Equal-High
LOTBL DCW +050 HITBL DCW - 080
+ 040 - 040
+ 020 - 020
+ 010 - 210
+ 000 - 010
DC o8
Look-Up Equal-Low
LOTBL DCW +040 HITBL DCW - 060
+ 040 - 040
+ 020 - 020
+ 010 - 010
+ 010 - 000
DC a2

(B-22) Construction of Binary-Search Subsidiary Tables

Calculation of binary-search subsidiary tables is to be based on the
following:

Select initial point of comparison

Determine the first value in both the increment
and decrement tables

Fill in the remaining values except the last
Select the last value. -

The initial point of comparison is generally at the mid-point of any
table, although it may be against any of those items which fall in the
overlapping portion of the two binary sub-tables of the next lower
power of 2. Let us call this entry number M. From this, the value

of the constant, MIDPT, can be calculated relative to zero. Where L =
the length of each table entry:

MIDPT = L (M-1)

The second points of comparison are the most critical because they are
peculiar to the type of search performed. For an equal-high search,
T, the total number of items in the table must include the highest
possible argument (or a special indicator). The same is true of the
lowest argument in an equal-low search. Compute the value of n (the
power of 2 that is the next lower to the total items) so that:

2n\T<2n + 1

Having determined the values of M, L, T and n, findthe items that may
be compared against on the second iteration. Consider tables in ascend-
ing sequence. The following formula table (Figure B-16) shows how the
two points are arrived at for the different types of search:

Type of Search Item # After Low Item # After High
Result (P1) Result (Po)

Equal on-1 T-on-lia

Equal-High on-1 T - ool

Equal-Low ol 791,

' Fiqure B-16 ‘

Second Points of Comparison for Ascending Tables

B-45

The above points may be called P. Thus, for example, if a table
contains 53 items for an equal-low search, T=53 and n=5 (i.e.,

25 53 20). When the result of the initial comparison is low, the
second should be made at item P4 where:

_oH-1
P1—2 +1

Pl =17
If the result is high, it must be made at item #38.

Py =53-2"141

Py=38
To obtain Vy, the value to be placed in the decrement table (LOTBL),
the VZ’ to be the first entry in the increment table (HITBL) merely
subtract the value of M from the respective P and multiply by the
length of each table item. Thus:

Vi=L (Pl - M)

Vo =L (P2 - M)

The same type of formula table for descending tables applies
(Figure B-17).

Type of Search Item # After - Item # After
Low Result (Pl) High Result (Pz)
Equal A e | 21’1-1
Equal-High b on-l g
Equal-Low 7ot ga-1
Figure B-17

Second Points of Comparison for Descending Tables

B-46

The values of vy and VZ are determined by the same equations shown
above.

It can be seen that the values of V, and V2 are functions of the number
of items in the table, the length of each item, the sequence of the table,
the type of search to be performed, and the position of the initial
comparison.

The assignment of specific values to V., and V,, forces the search's
second iteration to look at the center o} some éize binary table. For
an equal-only search, this is exactly at the center item. When the
look-up is for egual-high, it is the highest item of the binary table's
lower half; for equal-low, the lowest item of the upper half.

After the second comparison, the search assumes a regular pattern
for every type of look-up and previous result. Therefore, these
portions of the two subsidiary tables are identical except for the signs
of the values. They follow this progression:

L), L3, ... L &%

When dealing with an ascending table, all signs in the decrement
{LOTBL) table are minus and in the increment (HITRL) table, plus.
The signs are reversed for a descending table. Note that this portion
of a subsidiary table always contains n-2 values.

At this point the subsidiary tables are complete for an equal-only search
where, in the event of a not-found condition; the programmer is not
concerned with the next higher or lower items. All that must be added
is the "search-end indicator" which, in the sample program, is the

position without a word mark (DC) following the increment table (HITBL).

For an equal-high or equal-low look-up the final element of a subsidiary
table is added to the address of the very last item compared causing
the program to "find" it, or the item immediately to the right or left.

I the item in the final comparison is the one desired, this element is
zero. Otherwise it is plus or minus the item length (L) causing the
search to end one item higher or lower in the table. This value is
constant as follows for the different table sequences and types of search.
(Figure B-18).

B-47

Type of Search Decrement Increment
: {ILOTBIJ) HITBL)

Ascending Tables

Equal Wot reqguired * Not required *

Equal-High Zero +L
Egual-Low -L Zero

Descending Tables

Equal Not reguired ¥ Not required *
Equal-High Zero -L
Equal-Low +1, Zero

Figure B-18

Final Subsidiary Table Values

* Note

By including the same values required by equél—high or equal-
low searches, a notfound condition following an equal search
can pinpoint the next higher or lower item respectively.

The final increment table item must be followed by a location not
containing a word mark to stop the iterations.

By following the above steps the user can easily adapt the sample
standard search program to perform any of the usual table look-up
operations upon any sequentizl table containing elements of a fixed
length. Since the size of the area being searched is conirolled by
the size of the subsidiary tables, the latier may be modified by a
program {such as an internal sort) to expand as the table (addresses
of already sorted records) increases.

B-48

Conclusion - True Binary Table Search

The true binary search has wide application for any computer not

equipped with table look-up instructions. Some alternative method
might be preferable when dealing with tables containing only a few

items, or if the frequency of "hits" is disproportionately large on

a very small number of items.

The storage requirements of the program and subsidiary tables are
only slightly greater than for the simplest type of indexed search.

No other programmed table look-up can completely search an ordered
table or group of records in as few iterations as the binary search.
The number of steps actually executed per iteration is hardly greater
than by the usual, less efficient routines.

The binary search, of course, cannot operate upon non-sequential
tables.

B-49

(B-23) Direct Address Table Searching

The table functions are arranged so that the coded address of any of
them is included in the input media. Direct reference to this address
locates the data required. The tables entries may be in random order.

Example:

A table containing 90 items (10 characters per item) is arranged so
that the actual address of each item in the table is coded in the input
media (card). The table is located in storage locations 091 to 990.
The table function addresses are punched in column 1, 2 and 3 and
range between 100 and 990.

To find the table functions that relate to the coded input card, compare
the input records to its associated table function. If the item is not in
the table, this fact is indicated. (See Figure B-19

i
Move address

_ . from column
T L No . Yes
Iitialize — Read > in17 03— —123t
. ! o o program
- S A !
: i Yes ! No
i L
! 7/~ Exception™ :
‘ . orerror. ;
i ‘\ . Process .
| Punch &= = function & ~———
. Figure B-19
Direct Address Table Look-Up
Search

i

(B-24) Successive Table Searching

This method finds its greatest value in instances of short tables with
high activity in the initial items. It consists simply of
beginning with the first item in the table and comparing each of these
table arguments in succession, with the search arqument. Example:

A short (20 item, 5 characters per item) table is arranged in random
order, with the items with the highest activity first. The table functions
are located with, and immediately to the left of, each of the table
arguments.

The table argument in storage that equals the search argument in the
card can be found, as shown in Figure B-20, Each card is processed
on the basis of its data in relation to each successive entry in the table.
If the item is not in the table, this fact will be indicated. Note that the
use of indexing and address modification would greatly facilitate this
searct.

Search Argument s'ss ss
Table Argument LS (Function)=> LT T T T T
Table Function £ F FF F F <{(Arqument}>,
-
. o e e { Pumch
_ VR | T
. 1 o 5 No . Yes
spro1s BN N over s~ undet equals . Process
Initialize Read ™20 et MR e O N i /_; function |
T o i(Yes | Yes 17 No —
¢ Exception , .t . ___ i ! !
or error | |
OF error. | ‘
o Jo~equals. No &)als\ No BE)
L E U o
} Yes ,/ Yes I Yes !
! ! {
Figure B-20

Successive Table Look-Up Search

B-51

(B-25) Special Table Searching

There may be instances where information in the input media will tend
to point directly to specific table areas, precluding the necessity of a
tedious general search. The programmer should be alert to these
possibilities.

Example:

A table containing items is arranged in six 10-item sections (10
characters per section). A 5-item section-table of two characters
per item serves as a locator. The section number is punched in
columns 78 and 79 of the input card. Column 80 indicates the item
number within the section. Thus, item number 3 within section AB
is defined as AB 3.

To find the table function in storage associated with the code punched

in the card, process each card based on the stored data and that already
punched in the card. If the item is not in the table, this fact will be
indicated (See Figure B-21)., Note that this method is basically a
combination of the successive search and the direct addressing search
methods.

B-52

Section Table Them Table

D& wemt o CLLLL L]
I D temz LU LLL LI
P M wems L) ULL U]
AB peme 4L PP LE:]
R E mems LI EL]T]
ete. Item 6 |['|H‘iil|
Ttem 7 'l’|}!lli]
mems Lol PPl
memo Ll U Qiil
gem100 | | b i '

‘:;q—i—tialize; J S

-4 Punch &—

1]
RSN SN -

No]

i
"AAd100 | . .
[toLCA ST

¥
1

,./)(&ia .. No. Add 100

Table Layout

3 process A- -—— Load 0610 —> cess A-

, o Yes Add col. 80 to
Read P;‘Qctiqg .

l address

ISR -
Process |

|

‘ Resei pro- ’

i towork area | address to E

T. e .{LCAop) . _810 J
—

Add 100 : Add 100

é‘I}\, No ‘T
C

P .4tk - Na :
to LCA i' > section” 7 to LCA

-
ection” & to LCA T > section ~ 9 i

et ! 7 secti | to 1LCA | ;
Yes [Yes Ye

: ¢/~ Exception

: or error

{

i N

Figure B-21

Special(Combinatior) Table Look-Up Search

B-53

1

(B-26) Table Search by Bracketing

This method of table search is utilized primarily in those instances
where the table is made up of relatively equal activity items. This
technique differs from binary table search. In this approach (Figure
B-22):

1. The search arqument is compared with the middle table arqu-
ment. If this table argqument is equal to the search argument,
the search is complete. .

2. If these two arguments are not equal, the search argument is
then compared to a table argument that brackets the next set
of possibilities in the upper or lower part of the table. (The
decision to search further in either the upper or lower part
of the table is based on the relationship of the original comparison
and the construction of the table.)

3. This process is repeated until a "hit" (equal or acceptable approx-
imate situation) is obtained.

Example:

A table of several items (2 characters per item) is arranged in ascend-
ing order. Each of the items are equally active. The functions are
located with and immediately to the left of the table arquments.

B-54

<— Function—> | 0

i 1 |
| lol2] | lolsl 1
i lols] | Lolsl '
| io;i_gii %14!0:.'}
| lols] | ﬂll
| lolel | FREY

E BUEY

2.

i s \y . - - SR
7/ - [3 .
Initialize --- > Read . .- - _)/l 13, /i Process ¢

)LO? - | function_
e e . v ! -
— 8 LLO
; Exception " :ZTT:f‘:j_i;ﬁ, R T

or error :

1.

Figure B-22
Bracketed Table Look-Up Search

Note that this bracketing search method of table look-up would be
greatly facilitated by the use of address modification and indexing.

B-56

l 0 '[‘7 ; (B-27 Clearing Storage Between Limits

An approach to clearing storage involves the use of the move
record op.

CS 332
(&
MRCM 200, AREA

A G/M-W/M or R/M must be in location 333. The A-address
of the MRCM instruction can be altered to clear an area of 1 to
133-1locations.

If the move record op is not available, the following routine
can be used.

Cs 332

cs

SW 200

LCA 332, FIELD
Cw 200

AW/Min 199 could be set in housekeeping if the location is
not otherwise used. The SW and CW instructions would not
then be needed. The A-address of the LCA instruction can be
decreased to clear an area of 1 to 133 locations.

(B-27.1) Clearing to Zero

A fast way to clear index registers to true zero. Assuming
there are word marks in locations 087, 092 and 097:

S 100
S
S

This places the signs generated from the subtraction in 100,
096 and 091, and the index registers are true zero.

B-56

(B-28) 80 Column Card Reproduce Routine

Figure B-23 shows a method of preparing a single card reproduce
program for the 1401 or 1460.

The problems to be considered with the 1440 revolve around the method
of reproduction and machine configuration. There are at least three
approaches to reproducing on the 1440:

1. When only one 1442 is available without disk, it is necessary
to merge blank cards behind the cards to be reproduced.

2. When two 1442's are available, the routine would read in on one
1442 and punch out on the other 1442,

3. If disk tracks are available, the input deck could be stacked on
the file. Then, after all the cards are read, load blank cards
into the 1442 and punch out from the disk. This takes a load
program and a dump program.

The routines to accomplish the 1440 reproduce function are too long to
be considered for inclusion in this manual.

Step| Card

[

Instruction

B-58

lo] A/ B Remarks
No.
o.Column pld ; E d E i d [
1 -7 |,]0j0i8|0,1,5| |Setw/mfor step2and3 |
2 B-14 |, 0;2';2 O:LZEG Set w/m for step 4 and 5 S
|13 15-21 |LiO 1:77', 7 4; 1 i2 Move program from card area to program _,, ;
L ares I A I
4 P2-25 B 3; 6 i 1 :1 ; Branch to program area § '
5 26-32 [,[3 i 6 :| 813 E‘? EZ Set w/m for step 6 and 7 (in program ares) | |
6 B3-36 l/lolglo] ! ! Clear read area P ‘ ;
1oy Ly S e
7 B7-43 |,10!0}11317 19, |Set w/m in 001 and for step 8] b
T T T T T T T o T H H
8 #4-50 |,]3,8,6(3'913 | |Setw/m for step 9 and 10 .
T T ¥ A :
9 B51-57 |, 1410!0/410 01 | |Set w/m for step 11 and 12)
T T T T - - - - N - T
10658-64 |, 14108 4 112 ISet w/m for step 13 and to end its execution |
T T T T B H
115 N ;4 1, Noop L i
1266-72 |L|0!8101!810 | Move readarea to punch area . o
i T T T
1373-76 (5 410,0| | | Punch-read and branck to step 12 .
I T 1 ;
I) o
T i T I
[[;
. -
L L These instructions are punched in a single
T T T T s °
1
| i i card and placed.in front of the cards {o ba . .
L ! | | ireproduced. The actual reproduce routing |
1 T T : 1
U |]| lisonlytwo steps (12and 13), Allthe .
(N ™1 - : i
L | i other steps merely clear core inthe | ;
1 T :
: : } : necessary areas and transfer the routi 1
| 1 Sler e o L L
il L from the initial read in area to the program | | -
I s
| [area. I S
L 1 ; ! ! :
ol [i i |
——— — |
Lot Lol Tiqure B- 93 : ;
; { i ! . SAQUIE D= g0 i ; H
R Single Card Reproduce Routine,1401/1460 | | |

62040588

Step| Card 5 A;;srruc’nons Remarks ‘[Effe,?ﬁve :\lo. ,
(B-29) 80 Column Card Gang-Punch Routine No {olumn T T4 LOF Lnaracters |
. Pld, [d, | Un Total
T =T T T
] - 1 1-7 olo'sjojt! Set w/m for step 2 and 3 :
Figure B-24 shows a method of preparing a single card gang-punch ‘ Lol T o i
program for the 1401 or 1460.) 2 B-14 |, OJI 2 | 210,2,9| |Set w/m for step4and 5 I
1 T i i H
- ol g ! B i
Gang punching on the 1440 would involve a program that would read the 3_15-21 IL O} 81' 04 58 } 0| [Move program from card area to program. fo e ’
card to be gang punched and then punch the data into the cards that ' bt bt |
followed. More than one card would be needed to execute this program. —+ 1 area] s St s el
4 92-28 |, 4;3;4 4;7;8 Set w/m for step 6 and to end program | | _ . _ |
Lo b execution ‘ ;
+ LB 1 !] K
5 p9-33 [Bl4!3la| ! ! Unconditional branch to program area ;| | 1-
T T T T H T 1
6 B4-40 |, |4'4!1 [414,8]| |Set w/m for step 7 and 8 (in program area) | i
T L 1 H
7 #1-47 |, 14 |5!5/4!5!9| |Set w/m for step 9 and 10 (in program ar¢a)
12y 2 program area) j
8 #8-54 |,14,6'614,6 7] |Setw/m for steplland 12 (inprogramarea)l | |
T T e E— +
9 B5-58 /10180 ; | Clear read area o 'r—~ o
: =1 : -
. i
1059-65 |, 41741010 1 (Setw/mfor step13andin0OL _ . | . _
11 B6 1 '! i '} ; Read card to be gang-punched L
12 p7-73 |Lj 0!8]0]18!0: |Move read area to punch area
M T 1 T T - S oSS S Tmmmots me e s m o m
1374-77 14,417 ;4| | | | |Punch and branch to step.13
T T T T
14 78 PVl L1 | Final w/m location
! ocation
I
Il 1 N ——— - e e . i . SO,
T T T T
U "o ‘
[[i
™ T i : H
Lo | | i lcard and placed in front of the card contain- | | |
L I T :
E :1 i ’§ ing the data to be gang-punched. The actual i” S S
i :l ; ; gang-punch routine is steps 11-13. All other , : i
L b cards set up w/m's, clear core and transfer . | :
1 T :
P data. Blank cards should be placed inthe | [. __
1 T T T N T
: : b punch feed. Data in the gang-punch master i i
T T T I
1 i]: E is punched column for column in the blank _{"
P . ! | |cards. If pre-punched cards are used in ; L
N i the punch feed, turn the I/O check stop switch off. : J
B-59 BN I L1 _ : i i .
‘ Figure B-24 - Single Card Gang-Punch Routine, 1401/1460 B-60 620405m5F ©

(B-30)

Relocatable 1401 Core Storage Print-Out Routine

Specify the beginning address desired in the A operand of
the ORG card.

If assembled separately:

a. Discard the first two cards produced by the 1401
SPS processor. These are a clear storage routine.

b. Discard the last card produced by the 1401 SPS
processor. This is a transfer card.

c. Dlace this assembled print-out routine before the
transfer card (the last card) of the program in which
the print-out is to be included.

If assembled with your program:

a. Punch the A operand of the END card with the proper
start location of your program.

b. Do not include an END card between your program and
this routine.

Any time that you wish to do a storage print out, manually
branch to the location that you have specified in the A operand

of the ORG card. The contents of the Print area (with word
marks) will be printed first, followed by locations 001 to 100,
101 to 200, etc. Each 100 character core strip will be identified
by an upper and lower limit indication on the far right (print
positions 301-332). The word mark associated with each core
position appears as a 1 beneath it.

This routine has not disturbed your program, other than to
have destroyed what was in the Print area (201-332). Restart

at any point without reloading the program.

B-61

29-4d

£€9-9

IBM

Program

Programmed by

INTERNATIONAL BUSINESS MACHINES ¢ ORPORATION

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

Form X24.13501
Printed in U.S.A.

Identification .« . . .
76

ao
Page No. LLé_l of
)

ansfer

Ll 12 P S |

L

Date _— AUTOCODER CODING SHEET
Line Label _Eperaﬁzig OPERAND
3 5|6 1516 25 30 35 40 45 50 55 60 85 70
0.1, . i Relocatable 1401 storage print-out subrouting, R . . N
02 |, . .., Origd m_mgmmgw_mgm_@_mmam L L .
0,3 N . Discapd cleard starage,card if gssembled separately N s e
o4-, This grogram u&iﬂ@lﬂ&.@.&z&&.@%ﬁm@@ to. ejlm_rgg thﬁse. L
YR I A B - N Toel1m1nateSBR+MAo
0.6,f...ORG.‘BSOO ...Stadrthere“,..x,‘....Ll.‘,.‘....‘.‘ :
o7, PRCORE .. . lcs . . o v ..., Hstablish storage capacity, constant. . CIMMJ
o8 | ., .., . ISBR., HICOR.E#B,A.. ._Store core gapacity . . ., . . core Wmit, , ., . |
X7 I S . e, P 200 RN 332 e
1,0 el CC I8 ey Double spaceafter nextprint L L, L |, L, L, L, L L,
T W M Printword marks, oo b
e | CS, . . 1832, Cearupperprintares, ol e
Wl i L I8BR TRANAS+6...20.1....ngotran'sferomeration‘.‘ N SetEQDCMﬁWichQl d
el i |8BR. L | TRANS 3,001, ., .Setup transfer operation, | 001 and MCW to setup {
N 1A, | |GONHI, 3,19, , ., Load hizlimit indicator, | , . |
6 |t JLCA, - v oo, JLoad lpslimit indieater, L,
LT,l...SBR..TESTmG.,,OQl.H Setup WMitest, 0 oy SetupDCWwithoolanc
ol fSBROISETAS L, ., SetupWMset, ., MGW tosetup W/M tests.
K SBR. . |CLENOP.+3 .,Setup set on clear Wm op + CW, in TRANS+4 and .
2ot b e e ., TRANSHL; label CLRAR
20, |TEST, , |, . . [BWZ , |YEBSWM, L. L, Test WM AN Q00L 4\ 4 tv it it oo e ena]
22, |, .01, |MCW , |G@, GLRNOP, , , . Set, GLRNOP£0 ¢lear WM .\ o .t vt it vt r s et i
2,3, Ca i B SET G Branchtoset o s e
2.0 WESWM, | MCW |, |@N@,, GLRNOP, ., Set GTLRNOPO NQE |, \ \ o\ o\ 4y § it
2.5‘§E\T.1|{|||SW|1|111|4|..|.|||||SwinLow1im1t1111 |A|@.|||.|‘n|1
I i IILLII lllllllllllIllllvllj__L_L,_JALlJJLj,lALllII|IAIIlllklllll 1
nAllAll:lIlIllllllllxlIlllIlIllllllAlAAL‘llllllllll\IA JAllIIQ-
-t lAllll’lI 11 Y W VA N S W NN SV VRS O IO TG WO SN I TR SO WA NDY PO SN SN SO S S SO SN S S AJ_JJJ.AA—A—L_K—L_Q
i T - .. Figure B-25 -2, Re-locatable Storage Print-Qut Rputﬂ.ne (Autocoder) §
n TR W | bk a4 |.|xn|.;,.l||.| FE § TR S SR W 1 FI S— i1
IBM o
Program .
INTERNATIONAL BUSINESS MACHINES CORPORATION Identification v o
Programmed by IBM 1401 AND 1410 DATA PROCESSING SYSTEMS Page No P
Date AUTOCODER CODING SHEET T2
Line Label itperatl& OPERAND
H 15)i8 021 25 30 38 40 45 80 86 80 85 70
o |TRANS, |, ., JLCA [1,201 | Transfer data to print | e .
YO I e e e e |SWOILVTRANSHL L L L,
0,3 CLR.NO} NOP, .]1,20,1 oo Clear WM or,NOP, , ., | L , . .
0.4 | AC. . |TRANS.+.4.,@30, , GomoforSXX;nTRANSB\-add
los !, .., i...|BU, [CMPTRA, ..., BRifnot 3XX in, TRANS Bradd|
06 |, i WL , . e, Prt HIXX I TRANSB-add. }, , 00 o
ot | OGS DORBE SPAGE L i
o8, | . .., W, . M eevw ., Print wordmarks, .., .|,
o8 . ..l... [MA ., @00@TRANS+4, . . .+l TRANSA, -LTRANSB, . .. Changeto Aop.
1,0 el SW . . SET+L, .. Modify test lrnop to higher core area . . ,, .
NP JMAIA@OOl‘_‘,SET+3“HA“_I.““H‘“HC;hlapqe‘tQ.A,op“‘
2, |, 1., |MCW , |SET +3, TEST +6, . S
lauMCWSET+3GLRNOPﬂ-3
T I W Loy AR - 12 o R T
170 S T A, ., @018 307, ., Incrementlo-limitindic, v o [\ o o
e Lo AL, @0010@ , 81,7 o, Increment hi-limit indic,, L L L 4L . ..
R N I T R B e e
1.8, |SETB, | MA.,@DOL@.,‘TRANSMA Increment TRANS B-adds , , [Chapgeto Aop, , , . . .,
1.9, el B TES T s e L {GQto CLRAB, , ., ., . . .,
2,0, GMPTRAl e [TRANS+,3, HICORE, Comp., TRANS.A.—addtthcore, P R S
2,1y . (..1. B‘U‘.];NQTR,A #JLJALLe§t1£]l_Lc‘Q£eJJIJLLLlAJ.J.A—LIIALAV.L.IA,,J;LLI.IVJ.il
(2.2, | o4y ; s G, SOJOI,L,,L,,A_J_,LA L .,n,J.;EHQ.t“crlqar BQOI T U G W U W S RTINS ST U SO T S S b du 14_,1,4;
2.3, e MNL L @9@,,81 9, L, ., . Decrement hi limit indic, fromhitohil, , . . . N
2.4, bl AL f@rg 1@, 318 T
X I A ey Brintdatgfinal
" 1 : v W L,J,_IZ4 [- [R Rt‘lntW/l\/[iflIl&L;x L T TV A (R Y U I WU T S SO
||IIA:IIJ H. .. FUSTE T S . .l.LJ_L,lEerdeleb‘i,i;L,l,l_,“L_l..J,‘l L 4o aa I A PR N
el JITORG L e I
I O ... Figure B-26 b, Rprloqatablp Storage Print -Out, Routine, (Au_ggogqr) P §
n 1

1 N 1

IBM

Program

INTERNATIONAL BUSIN

Progr

ESS MACHINES CORPORATION

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

Form X24.1350.1
Printed in US.A.

Identification T

80
Page No. l_'LEJ of

Date AUTOCODER CODING SHEET
perati OPERAND
; (3 [} 25 30 35 49 LH 50 $ 60 (1] 19
Lo P febid g dod : bt PRI 1 Ao e heo s PRSI U S T O SRS
t
, MA , .]@0,01@, TRAN,+3, . ., . Increment TRANS A-add., .} Chandeto AoQp . .,
v -
0.3 il B. . |SETB. , .. wsaaas Brapchto SET B . L o o i h e v v
0.4 -|CONLQ, ; .|DCW _, 1@Q001, THRUQ A T T SR U U U U Y S S ST S i SO G S
0,5 CONHI DCW.___@0100@ P SR S S S N VT RO ST RPSIT RN VOO SOr S S S S S S S SV
0.6, . . L IEND {PRCORE, . o v o v i ww i i i v i e s el e e
i
0.7, soa oo | PR L YU TS VT T U S S U SHP U BT PSRRI S SRS WA N ST ST ST U SO SN S SN S S SN0 ST SN TS WY S ST A B S
[
08, |, . vl a N P T S S U S T U S S S T S SO S S U G VO O S ST S S S G G S S W ST S S S
1
0.9, e aa] " a4 o PR W S T SR U S S0 SOV WA S VIS S S S S S G S [TSI W WA S S S UNS S GRS Y J—
i
w'.o Lo L L I N SV S S S S S S E U OV VO S A VU ST S SV T USSR ST S S S EAVEOAN T Y SR S S e
i
1Y LIS S - o PR T PR S RS | PR SR S S S S A Tt O RIS S VRS VOO NS ION ISP SHS SN0 VD MY S S S GO SV W S
[o2] |
ol L U N T AT APRNTIN A U U Y S S S S0 WA S ST S U S U0V GO 00 S S U S T W N T A S A T PO SO0 WA WY WY ST U0 WO Y S Sl SO
|
[P VU R RV S U Ui SA ST S S U 0 N S VO VU S S Y WO S S S T W S VO HVURY S G SOU UG WA S ST o]
V
[T N R O SRR S U U N U S S T S S S YA S ST S U S VOO ST T T S SR T WOV VY S A AU O G S AT GOt U0 S0 TN VA 0 TN G WY SO0 S G S W |
1
[T P O ST I SN S O i S S S S S S U S SO S S G S S S S S S WA S U S SV S S T SO0 S OO WO S G S . W'
[
[T R P i (T S S S U S S VO S SO0 U UU A S S S S S S S S S S S S S S T S SO O S E T S S S S
1
[2 P N PR TS TR UTI P S U S U S S U S S SR ST S SU S S SO SH S SO S W S HA T SN S0 S S S ST S S S S S A S WY A S U S S
[
LI P P R P S S S S S W S S U E N S Y U0 S SO0 S GO T S S WA U0 T N S SN S S0 A S S0 WA SO ST S GO0 WY S S S
=
1.9 O U Dt P S S S Y VU S ST OO S VA VU S S VA G Y S SO O S S S AT S S ST G S S S Sy W
[
20, | 4 4o baay PR T S SR U S U S U AT U TN Y S T S0 W S0 W S U SN0 VAN VAT N W SO ST GO S A A S T WA T W MY SV ST N U T WY
]
2., NPT | N PR T S S T W T YU VN WU ST SO SUST T SN0 WOAPUE ST NS TN SO0 ST SO U IOY S G ST A N ST SONS S T S ST WA R S S WPUE WO WO B SO
1
2,201 ot i I .t ARV RT U TV UG WK SN HU YO VAN U VN0 VAT N S A S A U SO SO U UL U T VOO SN0 WA LT O N S N T A S CHIY Y S0 IS PR W SO S S SO S
1
2,3, PSRV ERT T S N P PP ST ST YN VO ST S U S S VT ST SO HOATUT YA SHAPIUN U0 VU TN SV N SUNION WA S SO WY S WS S W HS SO0 U S ST S0 WG S S W |
1
2.4, | M PR S S T U U WY ST HPUN N0 SO0 VT WAV URT T SN A VUN SN WOU T IONT S S SN ST SN S DA S WA N0 TS U W S A A U L
|
28, ool . il P S AT VRN WU S N 00 N S GO0 AU U S N UUNN T VAT T T SO S T U O IO 0 W N S S B SR A R U
[
L P I | AT SRV WU [N TUT I SO0Y NS W S HA U A TN U Y U0 WT TN ST U SN S P P St P I B SV B BN WETRRE R B R VO T D WS TR T W
I
M FOUI S B W | Lo U WY PRI W S WU N SN U WU NS U VRS W0 (O G WO SO SO SN NS D SN WA SN U (s G WS SRS S W W R B S A F IS T U0 DY N T W W't
] . : &
ol it oo e oo Figure,B-25c.,Rerlocatable, Storage Print-Out, Rontine (Autocoder) | 2
‘ 2
PP S S U A R I U U U TS U T ST SO OT S SV TS0 S S S T T 0 ST S UONUURY S S U G S SO S G W Wt -
I 3
N P B PP S S UV VPU SV A S S S S S SOV S S T | PR N R

(B-31) [Field Inversion Routines

When it is necessary to invert an entire field within the same locations
in core, one of the following techniques can be used. Figure B-26 shows
the Revolving Method used in inverting a 5 position field. With an odd
number of characters in the field, the middle character remains the
same. Word marks in the original field are unchanged.

LABEL OP OPERAND COMMENTS
CR DCW 0 Location to save character
MLC FLD, CR Save units position
MLNS FLD-4, FLD Move digit portion of high
order position to units
MLZS FLD-4, FLD Move zone portion of high
order position to units
MLC CR, FLD-4 Re-insert character in hi
order position
MLC FLD-1, CR Interchange
MINS FLD-3, FLD-1 Second and
MLZS FLD-3, FLD-1 Fourth
MLC CR, FLD-3 Positions
Figure B-26
Field Inversion Routine Using Revolvin
Method

B-65

It can be seen that each pair of characters to be inverted requires a
routine of 4, 7 position instructions. By changing the address incre-
ment, the routine can be altered to handle any size field inversion.

If index registers are available, two can be used to increment and
decrement the addresses of "FLD". It would pay to use index registers
if the field to be inverted is extremely long. The technique illustrated
above would require?

Field Size to be Inverted Core Required

2-3 29 positions
4-5 57 ¢
6-7 g5 "
8-9 113 "

Figure B-27 shows the Slide Method of field inversion (5 position field).
This method must have a word mark in the high order position of the
field to be inverted and no others. The routine can be altered to handle
any field size by changing the d-character of the Branch if Character
Equal instruction and including the proper number of clear W/M instruc-
tions.

LABEL op OPERAND COMMENTS
CTR DCW 0 Counter
CR DCW 0 Location to save character
INVERT ZA INVERT, CTR Use +0 op code to reset
counter
MLC FLD, CR Save units position
MLCWA FLD-1, FID Slide field 1 position
MLC CR Re-insert saved character
ADD A ADD; CTR Use +1 op code to add 1 to
counter
BCE OUT, CTR,D Branch out after CTR
reaches +4
Figure B-27

Field Inversion Routine using Slide Method

B-66

Figqure B-27 cont'd.

LABEL opP OPERAND COMMENTS
B INVERT + 7 Continue slide
ouT CW FLD, FLD-2 Clear W/M's from all
but high order
character
CwW

The core requirements for this technique are:

Field Size to be Inverted Core Required

50 positions
53 "
57 "
54 "
58 "
5 "
59 "
56 "

WO, O WD

B-67

(B-32) Job Initialization Routines

Several functions usually must be completed before the body of the
job can logically proceed. These include the setting of word marks
in the card read in area, the initial setting of index registers and
counters, such as page numbering counters, etc. This initialization
subroutine should be programmed so as to allow a job-restart without
loss of any of the program's usefulness. These routines are often
referred to as housekeeping routines.

1.

Where a job requires all available core storage, the initializa-
tion routine can be loaded and executed. The main program
can then be loaded over the initialization instructions (over-
layed).

If possible, use ORG to origin housekeeping routines in the

punch or print areas, which can be cleared by CS OPS. This

will not cost storage useable in the main program, and eliminates
necessity for overlaying.

When a programmer uses EX to execute instructions, and then
overlay the area, he must provide his own linkage back to the
load routine. In the 1440, the reentry point is the Sth position
of the loader.

B-68

(B-33) Storage Locations 000 and 100 §1401/1460}

Storage location 000 is used for an internal timing count when card
reading is in progress. On any program step not relative to card

read {(op-code of 1, 3,5,7, or 4R, or 6R), this position may be used
provided the instruction does not decrement the address 000. This

core location will contain AB bits after a read op. This zone is
present, but cannot be accessed because any op capable of moving it
will decrement the address 000 to high order of core, and cause a wrap-
around error. It may be used as the first character of a tape record,

or a move record op (P), since these functions will cause the registers
to increment.

Storage location 100 will contain a O (8 and 2 bits) after a punch op.

B-69

{C} CPU Operating Pointers, and Miscellaneous Error Indications

Section

Contents

Operators Control Console
Console Error Log Sheets
Program Analysis Charts
Process Unit Error Conditions

(C-1) Operator Control Console

1. The 1401 Mode Switch cannot be used to cycle through an input-
output operation., When this switch is in the Single Cycle
Process or Single Cycle Non-Process mode, all I-cycles will
be taken one at a time, but all the B-cycles will be taken at
processing speed.

2. The I/Ex mode may be used for any I/0 op.
CAUTION

When operating the I/Ex mode and the program reaches

a point where you wish to alter a character, turning the

Mode Switch to "alter" requires passing the "run" posi-

tion. Occasionally. the machine will start running with-
out hitting the start key.

3. The Address Stop mode is not effective for any 1/0 op. If you

want to stop processing at the address of an I/0 op, address-
stop on the preceeding op-code.

(C-2) Console Error Log Sheets

Some error-logging procedure should be provided, so thatthe operator
can note the condition of the console indicators at the time of the
error. This provides an aid to both the programmer and the Customer
Engineer. This is especially helpful where the error occurs rarely,
or only after the operation is well underway.

Figure C-1 represents one such console error-log for 1401 and 1460.

Figure C-2 represents such a log for the 1440.

e

(ProcEss |) (ramac

D(exiryo |)(reaver | (eunce |)(overrap DG_E_R 1/

i . e Logic | |
B REG LA RFG Overflow |
(éTORAGE : b=
B£A
_— B)A
B<A
a A AUX B AUX I ADD | ‘ A ADD B ADD O ADD
&
Gmstﬂ&‘w&mﬁ:ﬂi @
Check Prog. [\
Reset Stop
(Tape Unit Density File Tape
Selected Protect Indicate
i Hi 1o On J @i
Storage Displayed
pata [y Illlllllll 1] HH
rocation | [T LT TT][TTTTITTTT || NN
Figure C-1, 1401 and 1460 Console Error - Log Sheet
PROGRAM
1440 CONSOLE DEBUGGING LOG
TIME DATE
l PROCESS RAMAC EXT 1/0 READER PUNCH PRINTER
1.0GIC op B A STORAGE ADDRESS
OVFLO B .a 3 g g }% L ADD
B A 4 A A || A A ADD —
B A 2} 8 8 8
B A 1 4 4 4 B ADD
2 2 2
AUX
M M B AUX
— ADD
0| STORAGE - D .
- - INSTRUCTION OP1 2 3 4 5
LENGTH 6 7 8 blank
MODE SWITCH: SENSE aL | REMARKS
, SWITCHES T
RUN A|B|C|DIE|F G } NO.| DISK PACK | RE4PR
I pram ON . — —— JR—)
1/O CHK STOP g —
A CHECK STOP ; -
AUX DIAGNOSTIC ‘
DISK WRITE |
5 o R
AUX B

Figure C-2. 1440 Console Error-Log Sheet

(C-3) Program Analysis Charts

The information contained in the following chart, Figure C-3, will
not only assist in checking out programs, but in differentiating
between program errors and system malfunctions. A customer
engineer may te needed to correct some of the malfunctions.

Pt

i .
torage print out all storape.
Reload proqa.m to point of
failure,
!

"

From analysis of console
termine type of error.

Note contents of I, B, ‘Astars. A&B registe;s and op
register check for type of error and indication,

)
}
!

A

’ Op Register \6//) Stor. Address A Register w B Register |

! Error Logic Error [Register Error Storage Error Error i 2

Lo | | a |
v ! I | 1

Machine should stop at I
ring 1 with op reg error.
Subtract one from address
displayed in stor add reg
and display contents of thi:
address in the B regeomp:#
to prog listing,

The arithmetic ck latch wi
stop the machine at the end
of the following cycle unles
it occurs during I/O opera-
tion before stopping.

If error occurs during arith-
metic oper refer to storage
ermor operation,

If error occurs in 1/0 loop
the oper to observe failure,

Stor err during I/O operation
will not stop the machine
until the operation is com-
pleted during wrap around

oper. It will stop the machin

on the following cycle. All
other operations will stop on
the error cycle with star
errors.

Stor err (inhibit ck) comes
on at the end of a cycle
where an even parity bit is
entered into stor.

If the operation was ari thme
tic determine the B field to
loop the machine using the
same bit configuration,

1/0O will stop at the end of
the operation,

-
The machine may stop on

the cycle, the A register
read in,or the following
cycle if sampled too late.
Determine whether error
is false or if the character
is out of parity,

9-0

Chart "B" _

Figure C-3A »
PROGRAM-A@ 'LYSIS CHARTS

See
Chart "D"
.

t Determine whether error

The machine will stop on E
the cycle.B reg error occurs
except I/O_operation. The
conditions A'B reg err shoull
not occur are:

[

. B cycle of a load oper.

B cycle of a clear oper,

. B cycle Areg 9inread
oper.,

4. Clear B field calculate

in multply/divide oper.

@ 1o

occured during above items]
Character out of parity or a,
false B reg register error
indicated. '

/

Check load cards for this in-
struction and determine wherd
the wrong, parity was first

CHART'C

Check program
program arrived at this address.

Example:

If it branched check the branch

P

Check program lsting and prog in
storage for illegal nee of index or
addressing greater than mach storage
size, Check the load card for this
instruction and correct punching.
Check listing for the possibility of this
address having been computed & movgd
in stor.

1
H
i

T Check the program to
see how the syst.
arrived at this add:es*

Check instruction deck for
the load card that pur this
instruction into stor,

SRR |

PROGRAM ANALYSIS CHARTS

Compare op reg contents at time of
error stop. Check the festres on the
machine to determine if it is a legal op
code. Check bit configuration and
create program to check for false error.

!
W

Check the possibility of more than one
star being gated out at one tme.
Check for possibility of anto-scan
mouble. Example:

Set 201, 600, 100 areas for trouble.

FIGURE C-3C

PROGRAM ANALYSIS CHARTS

Cc-8

From program listing locate the oper
code address for the operation the error

joccured on. Single cycle through the

i phase of this oper to be sure
A & B stars are loaded with legal

|addresses.

W

Check load card for instruction phasg
of the failure operation for correct
punches, Check program listing for
the possibility of this address having
been computed and moved into this
area to be used as an A or B field
address,

CHART D

" A" Register Error

————-

|
{
!

Correct YES

v B
Usually the A register is gated in from

B register. In this case, there should alse
be a B reg error. The procedure for this is |
described under B reg error. If the charac-!
ter has been set into the A reg by arithme-
tic, read or punch conmols loop the exist+
ing prog or create a program duplicating thé
condition or run the CE diagnostic deck for
trouble shooting, :

Parity

oo

iLoop system by either altering the program
jor hand entering a program to create the
\error condition (same bit structure), Exampld:
jL 100 200 B load and branch back to the
‘load instruction. Asume the bit combinatios
;42 wm causes an A register error. Address |
160 should contain 42 wm. This would create
the assumed error card.

;

FIGURE C-3D
PROGRAM ANALYSIS CHARTS

C-9

- QN -
_{Hand enter a program to create the ¢

l error condition. Example:

jL 100 200 B 1o the load insw. Enter ’
{ the invalid bit combination with a wm
*in 200 to create a "B" cycle error.

b - -

CHART E

"B" Register Error

Failure
YES 1oad, clear 3
read, calcB
cycle

Correct \\\\ YES
Parity

" Loop system either by looping the
program or by hand entering a
prog o create the error conditions.
Example :

M 100 200 B assume that the bit
combination 421 causes a "B"
register error. Address 100 or 200
should contain 421 and address 099-
or 199 could contain any legal bits'
with a wm. This would create the
assumed error condition,

{?he B register is gated into from storage

: only, so determine whether the informa-

; tion was correct in storage. Find where

; this address was last entered into in the
program. Single cycle through the in-

‘ struction you find to see if the informa-

! tion was correct when you inhibited it

{If it was, check the core array, sense

% lines & B reg latches. I it wasn'y, loop

* this instruction or hand load a program to

icteate' this error condition. §
{

FIGURE C-3E
Program Analysis Charts

(C-4) Process Unit Error Conditions

Figure C-4 lists the 1401/60 error siop conditions and the associated
reset and/or re-start procedures.

Machine Stops :
Type of | Process Check Storage Adr, Lights ON
Unit Error Stops "ON" Req, Contains Wwhen Stopped | }eset By Remarks
A Reg Parity End of Next Cycle |"B" Address Process A Reg| Check Reset | Contents of A Req at time of
' (B Cycle) Check Reset Key error will still be on display
(A Reg resets on A cyc. only)
B Reg Parity End of Cycle in Address of loc, Process B Reg| Check Reset | Contents of B Reg at time
. Which Error is that was read into Check Reset Key error is detected will remain
Detected "B" Reg on display in B Reg.
Arith Validity | End of Following |[Normally 1 less than| Process Logi¢ | Check Reset | Adr, Reg will indicate one less
Cycle , |the loc, that Check Reset Key than the loc, that the resultant
resultant is in, is read into except: 1) When
error is detected in the last
cyc. of the Ist forward scan on
a recomplement operation when
Q it will indicate the same loc. or
I 2) It will indicate one more
than the loc, the result is read
into on a reverse scan opera-
tion. The bit combination
which caused the error will be
in the storage unit and not on
display under "logic," Remem-
ber it is quibinary form when
checked and goes thru the trans-
lator before going into storage,
Inhibit Parity End of Following | Dependent on oper- | Process Stor. | Check Reset{ This type of error indicates that
Switching Cycle atlon.being perform- Check Reset | Key an even bit configuration has
g_gs%ggnpi%aii that been read into storage,
Figure C-4 a PROCESS UNIT ERROR CONDITIONS
Machine Stops
Type of Process. Check Storage Adr. Lights ON
Unit Error Stops "ON" Reg. Contains When Stopped | Reset By Remarks
Op Reg Validity&r End of Cycle in ‘Dependent on type Process Op Check Reset| The check latch will not turn
Parity which error is of operation being Req. Check Key on during 1 Ring Op time
detected performed and Reset
phase,
Storage Parity & End of Cycle in Bit combination Process Check Reset| The error check is made after
Address Validity which error was | that caused error, Storage Key the address is serialized.
Register detected. Address An error could be caused by a
Check Reset fault in serializing.
Wrap End of Following | Dependent on Process Check Reset{ Can be modified by +1 or 1
a Around Cycle operation being Storage Key
AN performed & Address
w modification, Check Reset
NOTE: If any of the above
errors occur during an input/
output operation, the system
will complete the particular
operation involved before
stopping.

Figure C-4b PROCESS UNIT ERROR CONDITIONS

(D) Reader/Punch Operating Pointers and Miscellaneous (D-1) Start and Stop Keys
Error Indications

The Start and Stop keys on the IBM 1440 System are not common.

Section Contents Page Each key applies only to its respective unit. This differs from the
1401 where any stop key can stop the system.
D-1 Start and Stop Keys D-1
D-2 1440 1/0 Operation D-1 A condition exists where the operator cannot stop the machine from
D-3 Stacker Selection (1402) D-2 any stop key. This happens when:
D-4 Punch Stacker Selection with I/O Check D-2
Stop Switch Off 1. Using reader punch release
D-5 1440 Stacker Select and Branch D-4 2. Last card testing
D-8 Last Card Indication (1442) D-4 3. Branch on last card to other than reader punch operation
D-7 1402 Punch Feed Notes D-5
D-3 1402 Error Conditions D-6 The problem occurs when a start read feed (SRF) or start punchfeed
D-9 1402 Punch Feed Restart Procedures D-3 (SPF) is given after the last card has been read. To prevent this from
D-10 Punch Feed Read Feature Restart D-s happening, test for last card prior to issuing a SRF or SPF command.
Procedures Bypass the SRF or SPF on last-card-on condition.
D-11 Punch Check Error using Pre-Punched D-11
Cards
D-12 Validity Errors D-11 (D-2 1440 1/O Operation
D-13 Collating into the 8/2 Pocket D-12

1. When attempting to punch or print without a termination group-
mark after the last core position accessed, the unit addressed
will go out of its ready status. Manual depression of the start
on that unit will be required before it can operate again.

2. The punch skip feature increases available process time, but
does not make the actual skip go faster than normal speed.

3. Since cards follow the same path for both reading and punching,
the possibility of lacing a deck of cards is greater than normal.
All decks should be reproduced to have a back-up, especially
while testing.

4. A punch area of more than 80 positions will cause column 81
to be laced.
5. If no GMWM is present within 81 positions of the card read area,

the reader may continue to read cards and data will be entered
serially into core until either a GMWM is encountered or until
core has been wrapped.

(D-3) Stacker Selection {1402)

Normally, the d-character for a stacker select op would be 1,2,40r

8.- However, the instruction SS 5 will cause both read and punch stack-
er selection. This instruction must be given within 10 MSafter a read
op.

The instruction SS 5 causes both a read stacker latch and a punch
stacker latch to be set. Once such a latch is set, it can only be
released by completing the respective stacker selection.

Consequently, the next card from the punch feed will go to the number
4 pocket, even though a number of cards have been read following the
selection of the reader card into pocket 1.

The various stop keys are inoperative during a stacker selection

operation, so that once the card is mechanically selected (in motion),
selection will be completed before the machine stops.

(D-4) Punch Stacker Selection with I/O Check Stop Switch Off

When correct cards are being selected to either the 4 or 8 pocket and
a punch error occurs, it is possible that the first good card after the
error card will be selected in the normal punch pocket. Program
steps to avoid this false selection are: (See Figure D-1)

Punch op (or PFR op).

Branch on Punch Error, set switch 1 on, branch to SELECT.
SELECT (stacker select op)

Test switch 1: if on, perform correct steps, if off, NSL

NSI (Next sequential instruction).

S

This allows correct (Normal Punch Pocket) selection of errors but
allows program-controlled selection of all gcod cards.

Note: In many cases, it will be possible to perform the corrective
steps in the time allowed, without programming a switch 1.

Punch Op
or
[Pch Fd Rd

——
Stacker
PchM Select

1{ I Steps to , i

1

Q
ke

5"

P

— handle err ;
! condition,
! reset SW 1

| Off |

Figure D-1
Stacker Selection with I/0 Off

NSI

J

(D-5) 1440 Stacker Select and Branch Instruction

The Stacker Select and Branch command is not provided for the 1440,

(D-6) Last Card Indication (1442)

The 1440 last card indicator is turned on when the following conditions
are met:

1. The feed hopper is empty.
2. A card is ready to be read.
3. The start key on the 1442 has been pressed.

When punching into cards that have been read on the same pass, the
next-to-the-last card has been read when Ready Status is dropped.
As the punch instruction is executed, the operator must press the
1442 start key, which sets the Last Card Switch on. If the last card
test precedes the read, the last card will not be read.

As long as there are cards in the Read-Punch feed path, a read
instruction can be executed. If the last card is at the punch station,
a read command may be used to run the last card into the stacker.
When a read is executed under this condition, blanks are entered into
the read area: MR %G1, 901

(D-7) 1402 Punch-Feed Notes

1. Sense switch A does not test for last card in the punch feed
even when performing a Punch Feed Read op. A test for
punch feed last card must be programmed, such as testing
for a specific character in a particular column,

]

2. Programs cannot be loaded from the punch side, even when
the Punch FeedRead special feature is installed.

3. PFR and normal read operations use some of the same read
circuits of the 1402, Therefore, a PFR error can be tested
by using the read error branch and appropriate d-modifiers,
when the branch follows the punch feed read op. Punch errors
can similarly be recognized.

4. At (punch) end of job, clear the punch area (101-180) and
program another dummy punch cycle. This will permit proper
stacker selection of the last validly punched card, and insure
that all good cards are out of the punch feed. The stations of
the punch feed will contain blank cards, ready for the next job.
It is permissable to have blank cards in the punch feed at the
Start of any punch feedrun | except a PFR (Punch Feed Read).
However, it is normally good practice to press both reader
and punch non-process run-out keys to insure that the reader
and punch clutches are latched. This procedure will prevent
reader and punch stop errors when starting on the next program.

If it is essential that hole patches be used to correct error punching in
original documents; place them on the back side of the card. The 1402
feed cards face down. This allows the 1402 punch to repunch the hole(s)
from the non-sticky side of the patch. If this practice is not followed,
the sticky side of the patches will build up on the business end of the
punch, and cause excessive wear.

Apply patches to error punches only, and not to the entire field. Do
not apply more than one patch to any one punch hole: don't overlap
patches. This is a common cause of punch feed jams.

(D-8) | 1402 Error Conditions

~ Figure D-2 lists the 1402 error stop conditions and the aVSSoci‘atved o
restart procedure. : .

D-6-

Machine Stops=

feed cycle,

Punch (Process)

T3 Avv e

™
L ay =

Check Reset Key
(2) ,
-2 1402

Error Conditions

1/O Check Lights ON ' |
—init Error } Switch "ON" .| When Stopped Reset By Remarks
. Reader |Read At the end of the | Read Check (1402) | Check Reset Key Cardg must be run out before check reset
Check feed: cycle, | Read (Process) on the 1402, key becomes effective,
Reader Validit;g At the end of the Validify (1402) Check Reset Key Cards must be run out before the check
-1 {feed cycle, Read (Process) on the 1402, reset key is effective.
NOTE: Also, if the invalid combination causes incorrect pa.rltz.
Storage (Process) | Check Reset
Process (process)|on the Process
Check Reset Unit,
¢ Process
-3
Reader |Jam At the end of the | Reader Stop (1402)] Check Reset Key Cards must run out before reset key is
' _feed cycle, Read (Process (1402) effective., Damaged cards must be repaired.
Unit)
Punch [Punch At the end of the | Pch. Check (1402)| Check Reset Key
Check | feed cycle, ‘Punch (Process) |(1402)
Punch |[Parity At the end of the | Punch (process) |Check Reset Key
feed cycle, Process (")
' B Reg (")
Check Reset
(Process)
Punch |Jam At the end of the | Punch Stop (1402) Cards must be run out before the reset

key is effective,

(D-911402 Punch Feed Restart Procedure

In any application which includes a requirement for summary totals to be
accumulated from fields being punched into each card, restart procedures
are more involved than normal.

Basically, the increased complexity is caused by the physical arrange-
ment of the card stations in the punch side of the 1402, That is, by the
time a punch error has been detected, the card behind the one in error
has also been punched, Consequently, any restart procedure must allow
for the "backing out" of the amount fields from the accumulators for both
cards involved. The amount of programming necessary to accomplish
this will vary with the individual program.

The use of the Punch Feed Read Special Features on such applications
complicates the necessary restart procedures even more; therefore,
1401's which include this feature should be given special attention in this
respect. :

Adequate restart procedures must be included in the original writing of
such programs in crder to minimize difficulties.

(D-10Punch Feed Read Feature Re-Start Procedures

1. PFR Validity Error: (Read side validity error light on)
The first card into the stacker after run-out will have been punched
but not checked.

The second card (B) is invalid. It has been read but not punched or
checked,

The third card (C) has been neither read, punched nor checked.
Restart:

1. Remove cards from punch hopper and stackers, Run out re-
maining 3 cards into the stacker.

2. Determine the error in card B.

3. Repunch the original data into a new card A. (Do not include
any punches produced by the 1402 during this pass).

4, Correct and re-keypunch the original data in card B.

D-8

5. Reset the error with the 1402 check reset key (and process
unit check reset key if the punch read error caused a process

light),

6. Restart with cards A, B, and C, followed by cards previously
removed from the punch hopper.

2. PFR Punch Check Error (hole count error) : The last card

stacked (A) is the card in error.

The first card (B) into the stacker after run-out has been punched
but not checked. ’

The second card stacked (C) has been read, but not punched or
- checked,

The third card stacked after run-out (D) has not been read, punched
or checked.

Restart:

1. Remove the remaining cards from the punch hopper. Run out
the 3 cards left in the machine into the stacker.

2. Determine the error in card A (last card stacked before the
machine stopped with the punch check light on).

3, Re-keypunch the original data into a new card A. (Delete
any punches produced by the 1402 during this pass).

4. Re-keypunch the original data from card B into a new card B
deleting any data punched by the 1402 during this pass.

5. Reset the punch check light with the 1402 check reset key.
There should be no process error, unless there was a com -
pound error {punch check and validity errors).

8. Restart with cards A, B, C, and D, followed by cards previously
removed from the punch hopper.

These procedures assume that the job did not have cards feeding from the
read feed, If there were, these cards must be run out with the non-
process runout key, and re-fed. In some cases, it will be necessary to
back the job up (or restart), depending on the card order and the
application,

Alternate Procedure for Clearing Punch Checks on 1401 with
Punch Feed Read Feature

On updating programs, both tape and disk, when data cards are
being processed and punched in the punch feed, a punch check
can disturb the updating sequence of the run. The punch check
is detected after the card in error has updated the file, and

the following card has been punched and (depending on the
program logic) may have also updated the file. Any attempt

to reconstruct would be time consuming since it would have to
be done before processing could continue.

A simple procedure for restarting appears to preserve the
updating sequence in all cases. The procedure is as follows:

1. Remove the cards from the punch hopper.

2. Press the non-process runout key to clear three cards
from the punch.

3. Of the last four cards in the punch stacker, the first is
the one which caused the punch check, the second has
been punched but not checked, the third has been read
but not processed, and the fourth has not been
read. .

4, To restart, take a blank card (preferably of a different
color or corner cut from the data cards) and place this in
the punch hopper followed by the third and fourth (the last
two) cards from the punch stacker.

5. Replace the remainder of the input cards in the punch
feed. '

8. Press the check reset and start button on the 1402. Do
not press start reset on the 1401 console.

7. After the run, the odd color card can be discarded and the

two cards in front of that card should be checked manually.

D-10

(D-11) Punch Check Error, Using Pre-Punched Cards

When using pre-punched cards in the 1402 without the Punch Feed Read
feature, a punch hole count error is developed unless the pre-punched
holes are repunched.

On the 1402 with the Punch Feed Read feature, pre-punched holes must
not be repunched.

In either case, additional holes may be punched by the 1402 in the pre-
punched columns. Many punch hole combinations cannot be punched
without the Column Binary feature. Thus: without PFR, if a card
column already has a 7 punch, and the character R(BCD code B, 1, 8)
is required in this column in addition to the existing 7 punch (BCD

code 4,2,1), a punch check condition will still result. The CPU cannot
store a 7 (4, 2,1) and an R(B, 8, 1) in the same storage location.

Consider that a 5 has been pre-punched in column 15. Without the
PFR feature, an X zone (BCD code of B-bit only) may be punched in
column 15, but the 5 must be repunched. This would be done by
storing an N(BCD code B, 4, 1) in the storage position that will be
transferred to card column 15. With the PFR feature, an X may be
punched in column 15, but the 5 must not be repunched.

(D- 12) Validity Errors

If a branch on reader error instruction is being used, a branch on
process error instruction should alsc be used in the same routine when
a 1407 console inquiry station is on-line. (The I/O check stop switech on
the 1401 and the process check stop switch on the 1407 must be off to
make these instructions effective.)

A validity error can cause a process error. Since the process check
stop switch is off, there should be a test for process error following
the reader error test. A test for process error should also precede the
read op. This will eliminate confusion about the cause of the error stop.

Auny time the I/O check stop switch is off, tests for all I/O error condi-
tions must be made, Thus: if card errors are expected, reader check
and validity errors will be caught, as well as any other 1/0 errors
(printer sync or print check).

(D- 13) Collating into the 8/2 Pocket

There are various applications in which the collating of cards from the
read and punch feeds into the 8/2 pocket of the 1402 will save a subse-
quent off-line collating operation.

Because of a difference in card speeds between the two feeds and the
fact that the punch feed has an additional card station, the program must
be geared to insure proper card contrel.

To effect this collating operaticn, the program must include the follow-
ing two provisions:

1.

A "dummy" punch cycle must be taken to pass the card through
the check brushes and start it on its way to the 8/2 pocket.
This is facilitated by placing a blank card behind each card in
the punch feed that is to be directed to the 8/2 pocket.

Following the punch-complete of the "dummy" punch cycle,
143 ms should elapse prior to the next read instruction to
insure that the card from the punch feed reaches the 8/2 pocket.

The 143 ms figure has been arrived at by the following analysis.
From the time of the punch complete on the punch cycle that the
card passes the check brushes until the card is at the 8/2 pocket,
360 ms elapses. (Punch complete is that point in the punch
cycle that the 1401 interlock is released and the next program
instruction can take place.) It takes 217 ms from the time the
read instruction is given for the card to be read and then travel
to the 8/2 pocket. The difference is 143 ms.

To determine the 143 ms, calculate the basic-loop time (shortest
path) required to execute the actual program instructions between
the dummy punch cycle and the next card read instruction. This
minimum constant is determined from the instruction timing
information in the System Operation Reference Manual or in

the System Instruction and Timing Summary for the system to
which the 1402 is attached.

If the basic-loop time constant is 143 ms or less, a delay-loop
subroutine (Figure D-3) is required to avoid false merging and
jamming. (Allow somewhat more than 143 ms before reading
the next card, as a safequard against timing variances.)
(Figure (D-4)

-a

¥1-a

LABEL LENGTH oP OPERAND
07 ZA STCCONS, CTR Clear counter and add
first time.
STALL o7 A STCONS, CTR Add constant to CTR.
05 B (MAINRT), 2 Branch to main routine
on overflow.
04 B STALL Branch back to stall
loop.
CTR 02 or 03 DCW * Allow 2 or 3 positions
according to table.
STCONS 01 DCW * Insert digit 1 through 9
according to table.
Figure D-3

Delay Loop Subroutine

Stall Constant Using 3 Position "CTR" Using 2 Position "CTR"
"STCONS" No. of Adds Stall Time in MS | No. of Adds Stall Time in MS
1 1000 287, 293 100 27, 393

2 500 143, 543 50 13. 593

3 334 95, 818 34 9.177

4 250 71. 668 25 6. 696

5 200 57. 293 20 5,313
8 167 47, 805 17 4,485

7 143 40, 905 15 3.933

8 125 36. 730 13 3.381

9 112 31,993 12 3.105

Storage Requirements

SUBROUTINE
STALL CONSTANT (STCONS)
COUNTER (CTR)

3 Position "CTR"

23
1
3

27 positions

Figure D-4
"STALL" Timing Table

2 Position "CTR"

23
1
2

28 positions

(E) Printer Operation Pointers and Miscellaneous Error indications (E-1) 1403 Error Condiiions

%
Q
=
5]

Contents Page : Figure E-1 lists the 1403 error stop conditions and their associated
. re-start procedures.
1403 Error Conditions

Printer Errors

I/0 Error Checking

Printer Notes (1403)

1440 Console Printer

1443 Printer Pointers

1440 Carriage Control and Branch Inst.
Forms Skipping

1403 Forms Specifications

mmmmr'qmmmm
W W10 O N
mmmmrlqmmmm
[o e N0 S I S I SEVU I o

1401 Stops

Lights On

(I/O Check Process
Error Stop Switch On) Unit Printer Reset by Remarks
Parity Upon completion B. Reg Check Reset

of print out. process (Process Out)
Lype Sync Upon completion Printer Sync Check Reset

of print out. Check (Printer)
Hammer Upon completion Printer Print Same Sets Error
Fire of print out Check Store Core
Print Line Upon completion Printer Print Same Sets Error
Coraplete of print out Check Store Core

Figure E-1, 1403 Error Conditions

(E-2) Printer errors

There are four printer errors on the 1403:

1. Sync check (Sync Check Light}), 1403 chain out of syncroniza-
tion with the 1401 timers.

2. Storage address check (Print Check Light), correct storage
location has not been addressed for printing.

3. Print Line Complete Check (Print Check Light), each core
position in the print area has not been scanned.

4, Hammer Check (Print Check Light), hammer firing either was
not called for and occurred, or was called for and did not occur.

These checks insure that the following conditions have been met:

a. The correct character has been printed in the correct print
position.

b. All printable characters have been printed.

c. Printing did not occur for unprintable characters.

d. A hammer did not fire more than once for one print position,

for any one print line.

A valid CPU bit configuration that is an unprintable character on the
1403 will not cause a printer error.

However, if a printable invalid character is printed, an error will
occur. (If the character bit configuration was B, A, 4, 2, and 1 but
the A-bit was missing: the character Q would have printed for the
alphabetic G intended.)

An automatic single space will follow a line of error printing, unless
this line was printed using the space suppress feature.

E-3

{E-3) I/0 Error Checking

The point reached in an I/O Operation can be determined if there is a
sync check error. First, consider a print only operation. If a sync
error occurs during printing, the printing will be completed before the
1401 stops. If the sync check occurs between print cycles, the 1401
will stop before the next line is printed.

In the first case, without print storage, the B-STAR will contain 335
(or 303 for a 100 char print span) when the 1401 stops. In the second
case, B-STAR will contain 201. '

In combination I/0 Op's, the read and/or punch portion of the Op will
not be executed if the sync check occurs during printing, but before
the read or punch start begins. If the error occurs after the reader
or punch has started, these portions of the Op will be completed. If
Print-Read is executed, the B-STAR will contain 081 when the 1401
stops. If Print-Punch, or Read-Print-Punch is executed, the B-STAR
will stand at 181 when the 1401 stops.

If the Sync Check and Print Check are both ON, the Sync Check is not
considered a print error. If the chain is out of time with the printer
circuits, the machine stops before the next print Op. In this case,

the sync check ligiit will be on, but the print check light will not be on.

(E-4)

(E-D)

Drinter Notes (1403)

If the branch on printer error instruction -- BIN III,

(1/0 check stop switch off) is given immediately following a
print instruction (print storage feature), the system will inter-
lock until printing is complete (not including spacing).

To prevent this loss of process time, use the branch on printer
busy instruction -- BPB IIL. Program processing can continue
until the printer is no longer busy. Then the error latch can
be interrogated.

With print storage, put in the following loop before testing for
carriage overflow -- BPB *-4,

Whenever possible, use a delayed rather than immediate spacing
operation. This technique saves machine time.

1440 Console Printer

A left bracket (BA841) will cause carriage tabulation and a
right bracket (CB841) will cause a carriage return operation

if these characters appear within the data to be printed from
core storage. The character causing the tab or carriage
return will not be printed in the output. This can be convenient
when using the console printer in some sort of formated cutput
printing.

To space up the typewriter carriage, execute a write console

typewriter instruction witi the operand the address of a GMWM.

If the inquiry indicator latch has not been set on before a read
from the console typewriter instruction, the instruction will act
as a NO-OP.

(E-6)

(E-T)

1443 Printer Pointers

1443 Printer Carriage Function - the carriage canmot be
marnually restored or spaced unless the 1443 stop key has been
pressed to take the printer out of ready status.

1443 Printer Hang-Up - if the system interlocks because the
printer is not in ready status, the printer light on the console
does not come on. The only indication is an M in the Op
Register and a W in the A-register.

1443 Paper Drag Level - if the printer frequently drops ready
status, check the Paper Drag Indicator. It should be set
between 1 and 2.

In storage print out mode, 144 characters (on model 2)
beginning with the address in the manual address switches will
be printed on the 1443, If:

0001 is dialed, 0001 to 0144 prints

0002 is dialed, 0002 to 0145 prints
etc.

1440 Carriage Control and Branch Instruction

The Carriage Control and Branch command is not provided for the

1440.

E-6

(E-8)

Forms Skipping

Continuous skipping will result if a skip-to instruction is given
while the 1403 is in the process of executing a skip to that same
carrlage tape channel,

This condition might arise where the programmer has called for
a skip to some specific channel on more than one condition, but
nas neglected to allow time for this skip to be completed before
another skip is initiated from another section of the routine.

If a skip delay precedes a skip immediate (to another carriage
tape channel) in the same processing inte:val, the delayed skip
is cancelled.

If a skip immediate precedes a skip delay command (to another
channel), both skips will be executed in the normal manner.

If an invalid forms Op d-modifier is used, the carriage will
skip continuously. (In this case, skipping can be stopped by
2ssing itner the CPU start reset key, or the printer stop

(E-9) 1403 Forms Specifications

The degree of acceptability for the particular job will dictate the grade
of paper and carbon used. The printing requirements between the IBM
402 and 407 vary somewhat, as between either of these machines and
the chain printer.

1. An original and 3 acceptable copies can be obtained, usin~
11-13 1b. continuous #4 Sulphite bond paper and 7-9 lb. Kraft
with soft, medium and hard carbon, as produced by various
forms companies.

2. An original and 5 acceptable copies can be obtained, using
11-13 1b. continuous #4 Sulphite bond and 7-9 1b. Kraft carbon
selected to provide the desired printing.

3. The use of premium paper will make the printing of six copies
easier. The relation between the paper and the type of carbon
for the last copy is of special importance to reduce the hammer
face impression obtained on all back-printing machines. (It is
interesting to note that some paper manufacturers feel that soft
carbon is the best, while others recommend hard carbon.) Many
other grades and weights of paper can be used, depending on
the application and the desired print quality. Excellent eight-
copy printing has been obtained using a very low cost premium
paper from one manufacturer. A 12-part printed form with
carbonized backing instead of individual carbon sheets has given
good results. Thick packs or stiff forms are difficult to print
on the chain printer, and should be avoided. Samples of a three-
part form, two of which were card stock, have been printed
with good results.

4. The thickness and stiffness of the pack is the limiting factor
when used with any on-the-fly type printer. Minimum weight
paper for single sheet work is not recommended, as light
weight papers are subject to adverse static conditions.

5. Multilith masters can be cut, either with or without a ribbon.
It should be tried both ways on the particular type of master
paper being used. -)

(¥) Branch Instruction Pointers

Loose staples can cause jamming. However, generally good
results have been experienced, especially when the staples are
placed horizontally. Care must be taken to insure that printing

does not occur on the stapled area, as the type face will be Section Contents)
damaged. F-1 Branch if Indicator On Instructions
-2 Branch On Character Equal
Instructions
F-3 Branch on Access Busy Instruction
F-4 Saving Branch Instructions
F-5 Testing Sense Switch Settings by

Pivotal Branch Technique

DPage

(F-1)

[

Branch if Indicator On Instructions {F-2}

a Branch if Indicater On instruction contains a d-meodifier 1.
not used by the machine, the resulting instruction is effectively
a NOP. The next sequential instruction is performed.

=

With the Advanced Program Feature installed, an automatic
function of a successful branch is to save the address of the
NSIL This address is placed in the B-STAR. This operation
adds one storage cycle to the time for all branch instructions.
However, only successful branch instructions will actually use
this additicnal time. The address which has been placed in the
B-STAR can be stored in any other valid CPU address by using
the SER (H) op code as the first instruction of the branched-to
address. The location tc which NSI address is usually stored
is th= I-Address of ths subroutine exit-branch instruction.

-

ne advanced programming feature is not present, the contents
f the 2-STAR (NSI address) arc erased when a successful
branch securs. This does not increase the process time for
this op. This srasure occurs only if the branch is successful.

»

b
A

Branch On Character Equal Instruction

A T-position branch instruction can act like an 8-position
Branch On Character Equal command. The character in the
units position of the B-address is retained in the A-register,
and therefore acts as the d-modifier for the branch.

This can be used to advantage. If a tranch is required when
core storage position 079 contains a 3, use the instruction:

B III 079. If position 079 does not have the character (9), the
NSI will be executed. Obviously, this technique has limited
use and applies only when the units pcsition of the location
corresponds to the ccde to be examined.

When a code within a record is to be tested against a series of
acceptable possibilities, use the following method:

Label Cp_ Operands
TEST MCW (code), *+3
BCE X%, 77z, 7
BCE
BCE
BCE
N8I

(18 positions used + 4 positior constant)

? designates the code moved into the first BCE instruction and
assumes a W/M. ZZZ is the location of a constant that contains
a list of possible acceptable codes, such as: DCBA. XXX is
the branch-to I-address.

This procedure represents a substantial savings of core storage
if the possibilities table is lengthy, and where each BCE command
tests the same code positions of the record against another
character of the table. The normal program would be:

Label Cp M (F-3) Branch On Access Busy Instruction

TEST - BCE XXX, YYY, A
ng XXX, gg, BC The Branch Access Busy (B III/) is not effective if given following a
B 5 XXX, YYY’ D Seek command. It must follow either a Read Disk or Write Disk
Il?lgI XXX,) instruction. This branch command has the effect of a branch if an

access-busy condition has prevented the data transfer.
(32 positions used) One exception to the above is when a seek is followed directly by
another Seek. Here, the Branch Access Busy command must follow
the second Seek command and branch to that seek. On machines without
Seek-Overlap, this is necessary to prevent bypassing the second Seek.

Whers YVYY is the location of the code to be tested.

If a W/M is not present at “code", use the following routine:

Label Sp Operand (F-4) Saving Branch Instructions
MN (CODE), TEST +7
TEST l}\gdgg ggg(DE)’ E‘ESZT ’; 7 When a series of tests are to be made and a different resultant action
o BCE ” T taken with a return to a common point, the execution of the action prior
BCE to the test will save branch instructions:
l?lg'IE Normal - Test Then Action Save Branches - Action, Then Test
Label Op Operand 0]} Operand

(25 positions + 4 position censtant)
BCE DIGIT, CCDE, 2 MCW CHARAC, WCRK

BCE ZONE, CCDE, € =CE GC, CCDE, 2
- MCW =~ RECORD, WORKX
B ERRCR ECE 5C, CCDE, €
DiGIT MCN CHARAC, WORK B ERRCR
B GC
ZCNE MCW RECCRD, WCRK
B GO

|

-4

(F-5) Testing Sense Switch Settings by Pivotal Branch Technique

With the availability of 6 gense switches, each of which can be on or
off, it is possible to set 2 = 64 possible combinations of sense switches.
To test these possibilities, the following routine should be useful:

Label Op. Operand Comments
SBR X1, 63 Place constant "63" in index
. reg. 1
BSS GON, G Is SSW G on?
SBR X1,99+X1 Add 130's complement of 1
to ind. reg. 1
GON BSS FON, F Is SSW F on?
SBR X1, 98+X1 Add 100's complement of 2
to ind. reg. 1
FON B33 EON, E Is SSW E on?
SBR Xi, 96+X1 Add 100's complement of 4
to ind. reg. 1
EON BSS DON, D Is SSW D on?
SBR X1,92+X1 Add 100's complement of 8
to ind. reg. 1
DON BSS CON, C Is SSW C on?
SBR X1, 84+X1 Add 100's complement of 16
to ind. reqg. 1
CON B3S BON, B Is SSW B on?
SBR X1, 68+X1 Add 100's complement of 32
to ind. reg. 1
BON MCW 0@, %1-2 Move a zero to high order of
ind. reg. 1

Index Register 1 now contains a number which describes the sense
switch settings. This number is now used to modify the pivotal branch
to one of 64 possible routines:

Label

SSWTBL

> K

Operand

Comments

X1

X1

SSWTBL+X1
ALL OFF

G

FG

EG

EF

EFG

DF

DFG

Adds Ind. Regq. 1 to itself
(2X IX1)

Adds Ind. Reg. 1 to itself
(4X TX1)

This is the pivotal branch
All sense switches off

Sense Switch G on, B, C,
F Off

Sense Switch F on, B, C,
G Off

Sense Switch ¥, G on, B,
E Off

Sense Switch E on, B, C, D

G Off

Sense Switch E, G on, B,
F Off

Sense Switch E, F on, B,
G Off

Sense Switch E, F, G on,
C, D Off

Sense Switch Don, B, C,
G Off

Sense Switch D, G on, B,
F Off

Sense Switch D, F on, B,
E, G Off

Sense Switch D, F, G on,
C, E Off

Label

w

to w

[%¢)

W

Operand
DE

DEG

DEF

DEFG

CEG

CEF

CD

CDG

Comments

Sense Switch D,
F, G off

Sense Switch D,
C, F off

Sense Switch D,
C, G off

Sense Switch D,
B, C off

Eon, B, C,

E, Gon, B,

E, F, cn, B,

E, F, G, on,

Sense Switch C on, B, D, E,

F, G off

Switeh C,

o)

h

i

mg
g
Tj(D

[0}
o
ja}

9K
B @®

Switeh C,

C.

=i

L m

Switeh C,
off

Vg
o1 it
b

Sense Switeh C,
F, G off

Sense Switch C,
D, F off

Sense 3witch C,
D, G off
Sense Switch C,
B, D off

Sense Switch C,
F, G off

Sense Switch C,
E, F off

Gon, B, D,

Fen, B, D,

¥, Gon, B,

Eon, B, D,

E, Gon, B,

E, Fon, B,

E, F, Gon,

Don, B, E,

D, Gon, B,

Label

Op

o

Operand

CDF

CDFG

CDE

CDEG

CDEF

CDEFG

BF

BFG

BE

BEG

BEF.

BEFG

BD

Comments_

Sense Switeh C, D, F on, B,

E, G off

Sense Switch C, D, F, Gon,

B, E off

Sense Switch C, D, E on, B,

F. G off

Sense Switch C, D, E, Gon,

B, F off

Sense Switch C, D, E, F on,

B, G off

Sense Switch C, D, E, F, G

on, B off

Sense Switch Bon, C, D, E, F,

~

G off

Sense Switch B, G

E, & off

=

Sense Switch B, T

E, G off
Sense Switch E.
D, E off

Sense Switch B,
F, G off
Sense Switch B,
¥ off

Sense Switch B,
D, G off

Sense Switch B,
C, D off

Sense Switch B,
G off

1
f‘z)
0
o

]
[®]
Q

B
0

3]

on, C, D,
E, Gon, C, D,
E, Fon, C,

E, F, Gon,

Don, C, E, F,

Label Op Operand Comments) Label Op Operand Comments

B BDG Sense Switch B, D, G on, C, B BCD Sense Switch B, D, Con, E,
E, F off F, G off

B BDF Sense Switch B, D, F on, C, B BCDG Sense Switch B, C, D, G on,
B, G off E, F off

B BDFG Sense Switch B, D, F, G on, B BCDF " Sense Switch B, C, D, F on,
C, E off E, G off

B BDE Sense Switch B, D, Eon, C, _ B BCDFG Sense Switch B, C, D, G, F
F, G off on, E off

B BDEG Sense Switch B, D, E, Gon, B BCDE Sense Switch B, C, D, E on,
C, F off : F, G off

B BDEF Sense Switch B, D, E, F on, B BCDEG Sense Switch B, C, D, E, G
C, G off . on, F off

B BDEFG Sense Switch B, D, E, F, G B BCDEF Sense Switch B, C, D, E, F
on, C oif on, G off

B BC Sense Switch B, Con, D, E, B BCDEFG All sense switches on
F, G off

B BCG Sense Switch B, C, G, on, The program must be written in this sequence to work properly.
D, E, F off -

B BCF Sense Switch B, C, Fon, D,
E, G off

B BCFG " Sense Switch B, C, F, G on,
D, E off

B BCE Sense Switch B, C, E on, F,
D, G off

B BCEG Sense Switch B, C, E, G on,
D, F off o i

B BCEF Sense Switch B, C, E, F on,
D, G off :

B BCEFG Sense Switch B, C, E, F, Gon,
D off :

(G) Add and Subtract Instruction Pointers

(G-1) Arith Overflow Indicator

Section Contents Page .

- - This indicator is turned on by most object-deck clear-storage routines.
G-1 Arithmetic Overflow Indication G-1 If this indicator is to be tested during the program, it must first be

G-2 Field Reset using the Subtract Op G-1 reset off by a dummy test.

G-3 Miscellaneous Addition Notes G-2

G-4 B Field Sign after an Add or Subtract Op G-3 A method to reset this indicator is to place a dummy branch immediately
G-5 Sign of Single Position Counters G-5 ahead of the instruction in the program which may cause an overflow,
G-8 Summary of Negative Zero Conditions G-6 or as a housekeeping instruction: BAV * + 1.

Note: The accumulator field must be at least two positions for the
overflow indicator to be effective. It is not set on when a
single-position field has an arithmetic overflow.

(G-2) Field Reset, Using the Subtract Op_

Any field defined by a high order word mark can be reset to zeros with
the single-address subtract op instruction --S (AAA).

Notice, however, that the units positions of the field will be signed.
If the original field was negative, the resulting sign will be minus;
if the original sign was positive, the resulting sign will o< rlus. In
many arithmetic functions, this is of little importance because of
arithmetic sign control.

An exception to this is the reseting of index registers. These fields
must ke left unsigned. However, an index register can be reset using
the single-address subtract op. This technique is illustrated in the
subroutine section of this series.

The field sign must be considered when the field is compared. It will
compare unequal to a field containing all zercs, for instance.

If the sign of the field is constant (always plus or always minus), this
zone can be used as a program constant any time such zone-only
information is required. :

{G-3) Miscellaneous Addition Notes

Accumulators

Where possible, deﬁné core storage counter areas for each
total level as adjacent fields. This facilitates chaining and/or
indexing operations affecting these fields.

Adding a constant 1 without a constant

To add 1 to a counter without previously defining the constant 1:

Cp Operand
A *-6, CTR

*-8 refers to the op code "A" which is a + 1.

Zero and Add Instruction

The A-field of the Zero and Add instruction does not go through
the adder. Blanks in the original A-field will remain blanks in
the resultant B-field. In any addition or subtraction subsequent
to executing the ZA Op, these blanks will be treated as zeros.

If the A-field is shorter tha.n the B-field, zeros will be inserted
to fill out the B-field.

The zero and subtract instruction parallels the ZA function
except for sign control.

Resetting a counter to +0 without a constant
To clear a counter to +0 with a +0 constant:
ZA *-6, CTR

*_8 refers to the op code "ZA", which is a +9.

(G-4) B-Field Sign After an Add or Subtract Operation

Figure G-1 shows the resultant sign of the B-field after add or
subtract operations.

G-3

-0

Unsigned B Field

1 . +Sigm B Field

- Sign B Field

i " If Value of If Value of " If Value of .
A<B| A=B | A> B |A< B|A=B|A>B|A<B| A=B|A> B"

ADD UNSIGNED A FIELD| NS NS NS + +0 + - -0 +
ADD + A FIELD NS NS NS + +0 + - | -0 +
ADD - A FIELD + +0 - + +0 - - -0 -
SUBTRACT

UNSIGNED A FIELD + +0 - + +0 - - -0 -
SUBTRACT + A FIELD + +0 - + +0 - - -0 -
SUBTRACT - A FIELD NS NS NS + +0 + - -0 +

Figure G-1, B-Field Sign after an Add or Subtract Operation

(G-5) Sign of Single Pgsition Counters

When setting up a single position counter for iteration count control,
or any other use, the following sign changes occur:

B-FIELD CHARACTER

ORIG: SIGN
Plus (BA)

Minus (B)

Nc sign
A-bit only

Plus (BA)

Minus (B)

A-bit only

No sign

OPERATION

Add

Add

Add
Add

Subtract

Subtract

Subtract

Subtract

B-FIELD FINAL
SIGN

Plus (BA)

Minus (B) until counter

is decreased past -0, then
sign will remain plus.
(BA)

No sign

A-bit only

Plus (BA} until counter

is decreased past +0, then
sign remains minus. (B}
Minhus (B)

Plus (BA) until counter
reaches plus zero, then

sign remains minus. (B)

Plus (BA) until counter

reaches plus zero, then sign

remains minus. (B)

These considerations are important when the result is to be compared,
or is to be tested for a character-equal condition.

(G-6)} Summary of Negative Zero Conditions

Reset subtract a + 0

Multiplication of two factors of opposite signs when one of these
is zero.

Move zone of a "B" bit to the units position of a zero field.

Subtract with A field only (S AAA). Sign of the ledst significant -
digit remains the same. Thus, if the original field is minus;
a minus zero will result:

Reducing a minus figure by repetitive additions of one until
the figure reaches zero. This will be minus zero. Exadmple:
controllihg an iterative routine.

(5) Multiply and Divide Instruction Pointers (H-1) Multiple Multiplications at One Time

Section Contents - Page At least twenty five positions of core storage are used as preliminary
steps to entering the multiply sub-routine described in the 1401 manual.
Multiple Multiplications at One Time H-1 To conserve core, (as well as time) a technique of calculating federal
Multiplication by Repetitive Addition H-2 tax, fica tax, and city tax in one multiplication was devised. The
Division Notes H-4 various tax rates are placed in a work area designated as the multi-
Addition during a Divide Op H-5 plicand, (1400000362500000XX) where 14 is the federal tax rate,
Division by Repetitive Addition H-8 (14%) 3625 is the fica tax rate, (3 5/8%) and XX represents the city
tax rate.* Gross pay is designated as the multiplier and since it is a
five digit figure, five zeros are placed between each tax to prevent
overlapping of results. For example:

mm.mmm
O s O DO

140000036250000015
X Gross 200. 00
Equals 028. 000007. 250000003. 00000
federal fica city
tax ** tax tax

From this point, it is simply a matter of determining the units position
of each answer, and working on the results.

The same idea was used to calculate regular pay and premium pay in
one multiplication by using regular hours and premium hours as the

multiplicand, and rate as the multiplier.
* The left hand zero in all tax rates is assumed in decimal
placement.

*x In this method, the federal tax sxemption for a weekly payroll
equals: (13.00X number of dependents) X (. 14), and is sub-~
tracted from the above answer to arrive at federal tax.

H-0

(H-2) Multiplication by Repetitive Addition A. Calculation with Multiply Feature

A more efficient use of CPU storage and processing time is often Position Time Op A-Addr B-Addr
possible by using repetitive addition instead of the multiply special)
feature or a multiply-subroutine, 7 L1380 ZA PERCEN ACCUM-8
. 7 .9660 M TGROSS ACCUM
Many commercial applications involve multiplication of variable amounts 7 L2070 A FIVE ACCUM-1
by fixed constants, These constants might be a set percent as in payroll 7 .2070 - MCW ACCUM-2 STORE
FIT and FICA; the factor 60 to convert hours to minutes; 12 to convert 21(data positions) :
feet to inches; etc, 49 pos, 1, 5180 MS
As an example, (Figure H-1) payroil federal withholding tax (FIT) of B. Calculation using Repetitive Addition
14% is calculated, half-adjusted, and stored, using first the multiply
feature, then the repetitive addition method, Positions Time Op A-Addr B-Addr Remarks
FIELD NAME ' MULTIPLY SPEC FEATURE 'REPETI_TIVE ADDITION 7 .2300 ZA TGROSS STORE+2 TGROSS X 1
b) \ ! : ' 4 .2415 A STORE + 2 TGROSS X 2
SForage Field Label { Actual :Storage :Field Lakel © Actual 4 .2415 A STORE + 2 TGROSS X 4
Size Data _Size Data 7 .2415 A TGROSS STORE +1 TGROSS X 14
Taxable Gro 5 TGROSS 12534 5 TGROSS 12534 ! s A FIVE o ot
T Gross ; © L 2 pe 11 {data positions) (See Note)
Constant Five « 1 FIVE 5 1 FIVE 5 40 pos. P 1.1500 MS
FIT Percentage 2 - PERCEN 14 i _ _
Werk Area 8 ACCUM QOOQOO(DE__. - - Note: The two temporary positions of STORE are now not needed
Output Area 5 STORE 01785 5 STORE 017 55 and another field may be moved over the two units positions used
(2 Temp- in the repetitive-addition method,
orary
‘pos(iitions In this example, 7 to 9 storage positions (see note), and . 3680
— needed) - i i i he itd
Total Positions 31 ¥ MS of processing time have been saved by using the repetitive

addition method.,

In all cases, multiplication by the repetitive-addition method for
one-position multipliers will be faster than the multiply feature.
In most cases of 2-position multipliers whose high order position
is 3 or less, the repetitive-addition method will save time and
storage.

Figure H « 1 - Multiply Example

Various multiply subroutines use considerably more core storage
than the repetitive addition method and take substantially more
time. However, practically - speaking, the repetitive addition
method can only be used for multiplication by constants. I is
frequently practicalto use a repetitive-addition multiplication
subroutine, even if the multiply feature is available.

(H-3)

1.

Division Notes

The units position of the quotient is always located at the
units position of the dividend field, minus the length of the
divisor, minus 1, regardless of the number of extra decimal
positions involved.

The dividend field must not have a B-bit in any position except
its units position, where it may be required for sign control.

A zone may have been developed in some position other than
the units because of an arithmetic overflow in some preceeding
program step. An improperly placed B-bit in the dividend field
has the effect of reducing the value of the dividend, and conse-
quently reducing the resulting value of the quotient. If the zone
bits in other than the units positions of the dividend are either
AB- or A-bits, they will be ignored.

If overflows are developed in the divisor, they are ignored.

" In direct division, a zero divisor will signal a divide overflow.

The original dividend will not be changed.

If there are not enough positions allowed for the quotient, the
divide overflow indicator is NOT turned on, except when the
divisor is zer~. When the divisor is not zero, the divide op
continues up to the capacity of the positions provided.

A word mark can appear anywhere in the dividend - quotient field
positions. The divide op does not autematically yenerate a word
mark in either the high order of the juotient, or the high order
of the remainder.

(H-4) Addition during a Divide Op

Failure to clear the high order positions of the dividend field will result
in the uncleared factor being added to positions of the developed quotient.

Under some circumstances, this may be desirable. If the developed
quotient is to be added to another factor, this addition can be accom-
plished during divide. The factor must first be located in the correct
digital registration in the quotient field. Some process time can be
saved by this side-effect of the divide op.

Zone bits in the quotient positions of the dividend field will be removed.
Therefore, the sign of the sum developed in the quotient positions must
be the same as the developed quotient. The true arithmetic addition of
the numeric value of any data in these positions will be added to the
resultant quotient. Zone bits may be present in the units (sign) position
of the dividend only.

H-5 -

{H-5) Division by Repetitive Addition

Instead of dividing by a fixed constant, if the reciprocal of the constant
is used as the multiplier of either a standard multiplication using the
multiply special feature or the repetitive-addition method of multiplica-
tion, the operation may be faster and require less core storage than use
of the divide special feature. (See Multiplication By Repetitive Addition).

Listed below are some commonly used reciprocals.

Application Actual divisor Reciprocal constant
constant used for multiplier

Inches to feet, units to

dozens 12 .0833
Square inches to sq. ft. 144 . 00694
Ounces to pounds 16 . 0625
Minutes to hours 60 . 0166
Feet to yards 3 . 3333

Many other constant reciprocal factors can be used as the individual
job requirements vary.

Note: This method of division is onl ti ividi

y practical when dividing b
a con§tant. . There also will be some loss of accuracy. Eacg ofy these
tech{uques 1s more economical of time and core than either the
multiply or divide subroutine. (Figure H-2)

APPLICATION

DIVIDE

MULTIPLY BY REC

ROCAL

SPEC. FEAT,

SUBROUTINE

SPECIAL FEATURE

REPETITIVE ADDITION

MULTIPLY SUBROUTINE

FEET TO YARDS

(— 3) 1.2075 MS |26,411 MS 1, 6905 MS 92,0125 MS 15,80 MS
MINUTES TO HRS. '

(—60) | 1.622Ms 26,730 MS 1. 3585 MS 1. 4835 MS 11,77 MS
SQ. IN. TO SQ, FT. ' ' ,

(—144) | 1.6785MS |27,054 MS 1. 3700 MS 1, 8905 MS 11,77 MS

L-H

Figure H-2. Comparative Timings of Division Methods

() Miscelianeous Operation Code Pointers (I-1) Compare Instruction Chaining

Section Contents Page In some limited applications, the compare op code may be chained.
During I-cycles (instruction read-in time) of the compare op, the

I-1 Compare Instruction Chaining I-1 compare indicators are reset to equal (at I time)., A series of

I-2 Compare Instruction used to Decrement I-2 chained compare op's will not reset these indicators. Therefore,
Chained-Addresses the composite compare answer will be available at the end of the

I-3 Chaining Set and Clear Work Mark 1-6 series of compare op's. The first difference between a character
Instructions in the A-field and the corresponding character in the B-field of the

I-4 Data Movement without Setting Word -7 entire chained compare series will be the resultant answer. Once a
Marks compare indicator is set, it cannot be reset until the next compare

Move, Load and Store Operations
Move Record Instruction
Move and Insert Zeros Instruction

I iﬁ op reaches I time. Chained op's using the op-code only, never
I
I-1¢
Column Binary Operation 1-1
-1
I-1
I-1
I-1

reach 12 time.

o}

0}

Y . This method of multiple field comparison (Figure I-1) can be used to
1 advantage when several adjoining fields are to be compared with
2

3

r—n—-u—d)——nl—n—n—n—c
= = 0O 00~ Oy O

No Operation (NOP) Tips

-10 NOP of I/0 Instructions - several other fields which are equal in length. Six core storage
-11 Edit Instruction Pointers - positions, as well as the process time required to read in these
-12 Store B-Address Register Instruction - positions, is saved for every chained op.
Pointers
1-13 Subroutine Linkage With and Without I-16
Store B-Address Register Instruction Label Op Operands
1-14 Store A-Address Register Instruction 1-13
Pointers COMP C AAREA, BAREA
1-15 Notes on Index Register Timing i-21 C
1-16 Testing for an Odd Character 1-22 C
C
C
BE EQUAL
NSI
‘ Figure I-1
Compare Chaining
1-0

I-1

(I-2) Compare Instruction used to Decrement Chained-Addresses

The compare operation code can be chained to decrement the A- and
B-registers after a chained operation so that the registers are in the
proper position for the next chained operation. The following example
is used for simplicity: (For example, the length of the total fields
could vary, stc.)

Label Cp_ Cperand Comments

LOAD (Load the various edit words)

EDIT MCE MI, V332 Edit first field.

C Correct A- and B-regis-
ters.

MCE Tdit second field (chained).

cC Correct A- and H-rogis-
tors.

MCE Edit next field (chained).

C Correct A- and Bregis~
ters.

MCE =te.

C

MCE

ROLL A M, IN Add minor field 1 to

intermediate FLD 1.

C Correct A- and B-regis-
ters.

A Add minor field 2 to
intermediate FLD 2.

C Correct A- and B-regis-
ters.

A Ete.

Label Op Operand Comments
C
A
C
A
WRITE W Print edited line.
CLEAR S MI Reset minor field 1.
C Correct A- and B-regis-
ters.
S Reset minor field 2.
Correct A- and B-regis-
ters,
S Ete.
C
N
C
s

SWITCH (Branch to appropriate instruction)

The core storage layout (Figure I-3) shows that spaces are left
between each total field and the number of spaces will correspond
to the decrementation accomplished by the compare operation. The
space between each total field may be used for constants; so long as
no additional word marks are inserted.

N
&

g-1 eanbtg

punuewiexosd dQO o18dWOD J07 moLer] abBIOIQ

Minor 2

SERERE

The positions between
field 1 and field 2
getermine the decre~
~ment value of the
Compare Op.

Minor 1

| :—{“Tr“rﬂMmor Totals

Interm. 2 Interm. 1
3 [T T T L= T L LT T Tl [T [[intermediate
P Major 2 Major 1
) T T =L T [aor Totals
Final 2 Final 1
. | = Ll L] = [[.I] [pmal Totals

This method is advantageous when several classes of totals are to be
printed. The same routine is used, after insertion of the new addresses
in the EDIT, ROLL, and CLEAR instructions.

The reasons for conserving core storage must be weighed against the
additional time required for this routine. If the routine is used several
times (depending on number of fields, etc.), overall throughput can be
substantially enhanced.

1-5

(I-3) Chaining Set and Clear Word Mark Instructions

When a string of word marks must be set or cleared, the instruction

can be chained.

For example, if word marks must be set at locations 004 through 011
consecutively, the following chain will accomplish it:

Op

SW
SW
SW
SW

Operand

7,11

Comments

Word marks in locations 7 and 11
Word marks in locations 6 and 10
Word marks in locations 5 and 9
Word marks in locations 4 and 8

A similar chain of clear word marks will remove them.

If, in the same example, just the even numbered locations needed word
marks, alternation of SW and CW would accomplish it:

Op

SwW
CwW
SW

Operand

6,10

1-6

Comments

Word Marks in location 6 and 10
No word marks in location 5 and @
Word marks in location 4 and 8

{I-4) Data Movement without Setting Word Marks

When a numeric field is not defined by word marks, use the following
method:

Oo Operand

MN KKK, LLL

MN

MN

MN (10 positions used)
rather than:

Op Operand

SW KKK -3

MCW KKK, LLL A

CwW KKX -3 (15 positions used)

This method will save core storage for fields of 8 positions or less.

(I-5) Move, Load and Store Operations

An A-address can be entered into the A-address register without
disturbing the contents of the B-STAR, when using move, load and
store B-address register op codes as single address instructions.
This permits the moving of non-adjacent A-fields into a string of
adjacent B-fields, saving time and instruction storage space. The
example shown in Figure I-4 gives a possible application, using the
move op. The instructions for accomplishing this are:

Op Operand
MCW 454, 311
MCW

MCW 398
MCW 970
MCW 436
MCW 411
MCW 821
MCW 401

NsI

Note that the first two fields to be moved were already adjacent, and
required only the chained move op code.

1-8

8-1I

A-FIELDS

Accouﬁting Cyclé For/ /May be used bsi/ !#'7867; ZPerlod Ending {g [une , 1964

Movmg Non-AdJacent Fields into a String of Adj acent Fields

T 398 401 411 436 : 449 454 821 970
Accounting | Period ; for : May | , 1964 | Account I‘ # 7867
H H]) 1 1
B- FIELDS 311
Figure I-4

(I-6) Move Record Instruction

The move record op (MRCM, MCM or P op) instruction is terminated
by the presence of a record mark (¥) or a group mark with a word
mark { ¥) in the A-field, This character is transferred to the B-
field, except for the word mark associated with the group mark.

Thus, when moving data from a tape read-in area to the print area,
the GMWM can be used instead of the record mark. (The GM will
not print.)

The absence of a record mark or a group mark with a word mark may

cause a move record op to blank out all, or a large portion of core
storage.

(I-7) Move and Insert Zero Instruction

A group mark in the A-field will be moved to the B-field. A word
mark associated with the GMWM is not transferred.

(I-8) Column Binary Operation

The move and binary decode instruction -- M AAA BBB A is terminated
by a word mark in the high order of the A-field usually location 401. °
A group mark only will not stop this function. The group mark will be
displaced. A word mark in either field will stop the operation, just as
with the ordinary move (M) op.

1-10

{I-5 } No Operation {NOP} Tips

An instruction can be no-op'ed provided the A- and/or B-addresses
are valid, and the instruction length is either 1,2,4,5,7, 8 or more.
(There must be a word mark between the no op instruction and the
highest core location.) Thus, a NOP instruction can be longer than 8
storage positions, (such as NO123456789ABN) but it cannot be a length
that is not other wise valid for other instructions (N 12345N).

Note that certain instructions can call on an index register inadvertently
and the NOP A- or B-address can become invalid. If, in the instruction:
NICE A ---, index register 3 contains a factor greater than 064, an
invalid effective address will be developed in the A-register (ICE =
15,935 + index register 3. If index register 3 is more than 064:

15, 935 + 100 = 16, 035 will be developed.)

(1-10) NOP of I/0 Instructions

If it is necessary to NOP an I/O op, such as tape, disk, etc., the
unit control designation must also be changed to N. For example,

‘1%B6 234 R will become NNB6234R. Notice that a word mark is

not necessarily associated with the unit-control position of the
instruction.

I-11

(I-11)

Edit Instruction Pointers

Zero and punctuation suppressicn can be reinitiated by any 1.
alphabetic or special character, except the punctuation marks:

comma, decimal, and hyphen. Any other character will cause

suppression to be reinstated during editing with zero suppres-

sion on a system with the expanded print edit feature.

Any sign (zone bits) in the units position of the data word
(A-field) is removed by the edit instruction. If this sign is
required for subsequent program steps, it must be stored in
another core location before the edit instruction is executed
and replaced after the edit. The sign will be used by the edit
instruction, but it will not be regenerated.

Any valid character used in the edit control word will be
regenerated in the control word storage locations, and can be
used again without modification.

Although floating-dollar and asterisk-protection cannot be used
in the same edit word, a dollar sign can be placed to the left

of the asterisks by inserting it in the edit control word so that
there is at least one blank position separating the dollar sign and
the asterisk.

Thus, 12345 edited into $bbb, b*0. bbCR* becomes $F+++123. 45,
The factor O000N becomes $r+**¥**, 05CR* after an edit using
the above control word.

Some examples of control words and their results when the data 2.
word is zero:

bbb, b$0. bb $.00

bbb, b*0. bb sokdckkdok |)0

bbb, bbb. $O bbbbbbbbbb

bbb, bbb. *0 scofofokokfeokokokok
1-12

(142)

Store B-Address Register (SBR) Instruction Pointers

Indexing bits in the ten's position of the B-address are not
stored. If indexing bits are required, they can be transferred

using the move zone op code. Thus:
Label Op Operand
MOVE MCW XXX, 6X8
SBR 901
MZ MOVE + 5, 900

However, if the affected address has been modified by indexing,
the resultant address will reflect this modification. Thus, if
index register one contains the factor 010, and the B-field
length of the input area is 20 positions, the instructions:

MU %U3 5I3 R
SBR 321

will cause the address 564 to be stored at location 321. Note
that in this particular op, the address which is stored is actually
one position past the GMWM. The indexing of the address 5T3
gives an effective address of 543. The field length of 20 posi-
tions gives an effective ending address of 562 (actually 563
because of the GMWM). The stored address, then, becomes
564. This address factor will not reflect the original address'
indexing.

An address constant, or any 3-position constant, can be stored
by using the SBR (H) op: N 444, SBR 635. The constant 444
will be stored in location 835. Note, however, that had the
NOP A-address been indexed, the indexing bits would NOT
have been stored: N 5V5, SBR 666., The address 555 will be
stored at location 666, and the indexing bits will have been
lost.

The following technique will cause the constant 999 to be stored
at location 888 and one core position will be saved over the
previous method. SBR 888, 999

A SBR op cannot follow any conditional branch instruction {(or
any command having other than 4, 7 or 8 positions). During

the I-phase of the conditional branch instruction, the d-charac-
ter is read into the hundreds position of the B-STAR (or A-
STAR for a 2-position op), and blanks are placed in the tens
and units positions of these registers. If the branch is not
successiul, the SBR op will store an invalid address. In the
following example, both the hundreds and thousands positions
of the B-storage address register are loaded, but the tens and
units positions are left blank:

C AAA, BBB
B I 8
SBR AAA

In this case, the B-STAR to be stored, if the compare is not
equal, will be invalid (12bb) and subsequent execution of this
routine will produce an invalid address error.

Any three storage positions can be reset to zeroc or any other
3-character factor (without regard to word marks) as follows:

SBR FIELD, 0 or
SBR FIELD, 555

In this example, the label FIELD refers to the right-most of
the three positions being reset. This procedure can be used to
reset 3 independent 1- position counters or index registers.
An ADCON (autocoder) or a DSA (SPS) both requiring 3 extra
positions are not required for the address constant: 000.

The following instruction can be used to increment or decre-
ment an index register on systems equipped with the store A-
and B-address register features.

SBR X1,A+X1

where A is the value to be added or subtracted from the index
register. For example:

I-14

SBR 89, 16 + X1 Index register 1 is incremented
by 15.

*
SBR 89, 15998 + X1 Index register 1 is
: decremented by 2.

To save the contents of an index register and restore it at the
same time, use:

Label Op_ Operand -
SBR RESTOR + 6, 0+X1
RESTOR SBR X1,0

As a useful program linkage, the following places the
appropriate address in a common routine.

Label Op_ Operand
SBR INSTR +3, FIELD
INSTR MCW 0, GO

Core size dictates whether this method of decrementing
is valid.

I-15

(I-13) Subroutine Linkage with and without Store B-Address

Register Instruction

It is very economical in terms of saving core storage to be able to
provide linkages to closed common subroutines. Using the SBR in-
struction simplifies this task, as follows:

Operands

Label Op Code
MCW
MCW
B

SUB SBR

ENDSUB B

VALUE, AREAL
NUMBER,
AREA2

SUB

ENDSUB + 3

Remarks

Set up values for sub-
routine or

macro instruction

Branch to subroutine

Store NSI in last in-
struction of subroutine

Branch back to main
line

If the machine in question does not have the SBR special feature, the
following routine can provide the same linkages:

Label Cp_
MCW

MCW

MCW

Operand

VALUE,
AREA1

NUMBER,
AREA2

SBR + 3,
ENDSUB + 3

SUB

Remarks

Set up values for sub-
routine or

macro instruction
Move branch instruction
to return linkage

Branch to subroutine

Label Op Operand

Remarks

SBR B MAIN

MAIN A FIELD,
AREA3

SUB -

ENDSUB B 0

Branch linkage constant

Main line processing

_ Begin subroutine

Branch back to main
line

The same routine can be more simply stated with fewer labels:

Setup subroutine or

Setup return branch

Branch to subroutine
Branch linkage constant

Main line processing

Begin subroutine

Branch back to sub-

Label Op Code Operand Remarks
MCW VALUE,
AREA1
MCW NUMBER, macro values
AREA2
MCW * + 8,
ENDSUB + 3
B SUB
B *+1
A FIELD,
AREA3
SUB -
ENDSUB B 0
) routine
1-17

(I-14) Store A-Address Register (SAR) Instruction Pointers

If the A-address of a function is required in more than one
location, use:

A AAA BBEB
SAR 789

SBR 987

SBR 654

ete.

At the end of the SAR op, the B-STAR will have the address
previously contained in the A-STAR. Therefore, an SAR

op can be followed by as many SBR op's as might be required
to satisfy the program.

Storing both the A- and B-addresses is less convenient.
Example 5 of this section shows one technique to do this.

The primary use of SAR is in deblocking input records. When
the blocked records are separated by a record mark, the follow-
ing routine will keep track of the address of the next record
without having to otherwise increment the index register:

Label Op Code Operand Remarks
GO RT 1, MASTER Read tape
BER RDERR
BEF REOF
SBR X1, MASTER Place addr. of
first record in ind.
1
BCE GO, 0+X1 % Fully processed?
MRCM 0+X1, PROCES Logical record to
work area
SAR X1

1-18

Another deblocking technique, without using index registers,
enables the programmer to change the blocking by changing
only the DA statement associated with the file.

Label Op_ Operands
EOBTST BCE READ, 0,¥
MVSTEP MRCM INPUT, WORK
: SAR MVSTEP+3
(To save the next
A-agdr.)
SBR EOBTST+6
{To save A-addr
again)

SAR can be used in routines to reset an area to blanks or fill
an area with any character.

If the area to be cleared contains a word mark, only in
the high order position, SAR is not needed. For example:

Label Op. Operands
WKAREA DA 1X100
FIRST 1
LAST 100
MCW @ @; LAST
MCW LAST Moves blank to

last -1 and con-
tinues until high
order W/M is
sensed.

If the area contains many fields with multiple word marks:

Label Op Operands

WKAREA - DA 1X100

FIRST 1,5

SECOND 7,9

THIRD 11,14
1-19

Label Op Operand
TWENTY 90, 97
LAST 98,100
MCE @@, LAST
SBR X3 save last -1
HERE MCW 1+X3, 0+X3
SAR X3 save addr of
unblanked posi-
tion
C X3, LIMIT
BE MAIN to main routine
B HERE
LIMIT DSA FIRST -1

Note: Whenever a word mark is sensed, an extra move
instruction is given.

5. SAR is useful when transferring data in one area to another,
where differences in word mark configurations present a
difficulty, e.g., work area to master output area.

Label Oo Operand
HERE MCW MOVE + 8, TO MOVE +6
C MOVE + 3, LIMIT
BE MAIN to main routine
MOVE MCW A FIELD, B FIELD
units position of each area
SAR MOVE + 3
to save next A-addr
TO MOVE MCW 0,0
SBR MOVE + 6
to save next B-addr
B HERE
LaMIT DSA XXX

high order of A-field

Note: Although each move instruction is executed twice, this
technique saves considerable core storage.

1-20

(I-15) Notes on Index Register Timing

Indexed instructions require three to four additional I-cycles per
indexed address and, therefore, additional instruction time. For ex-
ample, moving ten characters requires (7 + 1 + 20) 11.5 us or 322 us
without indexing. Indexing of one address adds 34. 5 us, two addresses,
89.0 us.

While indexing easily outperforms address modification, one case where
indexing may not be the best method is that of indexing fields in a tape
1/0 area. In this case, every logic instruction referring to I/0 data

is indexed and time may be greatly incr=ased. The use of a work area
would reduce the increase in process time. This alternative will use
more core, however, and should be weighed accordingly.

Indexing time is especially worth considering if iterative routines (e. g.
programmed multiplication) are a basic part of the program logic or if
a slight increase in process time may cause an interlock in another
I/0 device such as the reader or punch.

I-21

(I46) Testing for an Odd Character

A. Method I (if column binary feature is available)

BBE XXX, YYY, 1 .
where XXX = address if character is odd

YYY = address of character tested.

Positions required: 8

B. Method IT Step-by-step testing
BCE XXX, YYY, 1
BCE XXX, YYY, 3
BCE XXX, YYY, 5
BCE XXX, YYY, 7
BCE XXX, YYY, §
Positions required: 40
C. Method IIT Chained Testing
MCW YYY, *+8
BCE XXX, CONET, ¢
BCE
BCE
BCE
BCE

CONST DCW @13579@

Positions required: 24

1-22

(J) Magnetic Tape Considerations

Section Contents

Tape Programming Pointers

Clear Group Marks from I/0O Area
Compressed Tape Instruction used to
Read Regular Records

Deblocking Routine

Diagnostic Tape Read Instruction
Miscellaneous Tape Nctes

Noise Records

Read Tape Mark Eiffect

Skip and Erase Tape Instruction
Tape Transmission Errors and End of
Reel and File Indicators

Trailer Nines Records of End of File
Recognition

e ey
DN =

4 e ey ey ey ey
© 00 =3O U1 O

ey
1

[hey

<

Tape Operation and Handling

i Operation of 729 Tape Drives .

2 Operation of 7330 and 7335 Tape Drives

3 Tape Handling

4 Tape Transport Cleaning for 729 Tape
Drives

Page

ey
Do -

ey ey ey ey ety
i []
0~ =3 D O W

ey
1
<«

= O

ey e ey
= b
QO €O b=

(J-1) Clearing Group Marks from Tape Readin/Readout Areas

Tape information can be lost if a spurious group mark with a word
mark (GMWM) is generated within the tape read (or tape read/write)
area. The tape read-in and write-out areas should be cleared after
each read or write operation, respectively.

Tape read is terminated when a GMWM is sensed in storage. The last
character accepted will be one position to the left of the GMWM. If the
tape read operation is terminated by an interrecord gap (IRG), a group
mark without WM is written one storage position past the last data
character written into storage. For fixed-length records, this GM
will normally fall over the existing GMWM. For variable-length
records, this GM may fall anywhere in the read-in area.

A GM without WM may be a character of the tape record. This may
be caused by a read parity error, or may be a program requirement.

If the GM happens to fall over a WM, and this GMWM is not cleared,
subsequent records will be effectively ended at this new GMWM.

Program around this condition by using a Store B-Register op and two
chained Clear Word Mark ops. These instructions must follow the tape
read op without intervening steps, as shown in Figure J-2.

LABEL Op A B d COMMENTS

RDTAPE MU %Ux BBB R Read tape record into BBB,
SBR CLRWM:3 Store B-STAR; Address of
GM + 1.
CLRWM CW 000 Clears WM at GM + 1
CwW Clears WM under GM
NSI

Figure J-2 Subroutine to clear word mark under group mark.

In the program steps preceding the next tape read Op, a word mark
may have to be placed under the correct GM, and, if needed, at GM-+l.

Another way to do the same thing, without clearing the WM at GM+1
is as follows:

LABEL Op A B 4a COMMENTS
RDTAPE MU %Ux BBE R Read tape record into BBB
SBR X Store B-STAR in Ind. Regl;
Address of GM+l.
MIN 0+X1 Moves number portion of GM+1

into GM+1 but steps down
A-Register to address of GM.
CwW Clears WM under GM,

Both of these routines may be used with SW to set a work mark under
the GM.

(J- 2) Compressed Tape Instruction Used to Read Regular Records

This command (special feature) is terminated only by an IRG. It is not
stopped by 2 GMWM in core.” Therefore, this instruction can be used
whenever there may be spurious GMWM's in the tape read-in area. It
is not necessary to clear the GMWM's. Note, however, that since the
operation is not halted by a GMWM in core, an extra-long tape recerd
could wipe out core storage beyond the tape read-in area. A group
mark without a word mark is inserted in core when the IRG is finally
sensed, as in normal tape read. However, the B-STAR will contain
the address of the GM plus 1, as in normal tape read.

J-2

{J -3) Tape Record De-Blocking Routine {See Fiqure J -1)

To pick off each record of a blocked set of variable-length records,
and find the end of the block as a by-product of the basic operation,
use the following program format:

LABEL, 0OP OPERAND COMMENTS
SBR MOVE +3,INPUT Initialize Move Record A-Address
MOVE MCM INPUT, WORK Record mark or GMWM stops move.
SAR MOVE+3 Store A-STAR for next move,
SBR END+ 8 Store old A-STAR (by using the
SBR Op) for GMWM test.
END BCE READ, 000, f Test for GMWM, If yes: Read tape.

If no: Move next record.,
R MOVE

Representation of a section of magnetic tape.

Tape record Record Tape record I

R
1 : #2 number 3 G =

A

Representation of a section of core storage.

Tape record # 1 Tape record Tape record # 3
in storage . #2 et -

hy

Figure J -1 Tape Record De-Blocking

J-3

(J-4) Diagnostic Tape Read Instruction

A little known tape instruction is the diagnostic tape read:
Cu PUX, A

This instruction allows a tape record to be read, checked for tape
validity, tested for end of file, but does not enter the data into storage.

The instruction has at least 3 possible uses:
1. Pass a tape and bypass a predetermined number of tape records.

2. Pass a tape and bypass a predetermined number of tape files,
on the same reel, separated by tape marks.

3. Check a tape for validity as a multiprogrammed operation
during normal running. This is especially useful when a tape
is to be read that was written on a tape drive without a dual-
gap head or dual level sensing.

After a diagnostic tape read is executed, the processor is immediately
released for other instructions. The IRG stops the read and the diag-
nostic tape read must then be executed. The EOR (end of reel) indicator
in the tape drive will be turned on if a tape mark is read, but not when
the end-of-reel reflective sticker is sensed, since the tape drive will

be effectively in read mode.

Other tape operations are interlocked until the check character for the
record being bypassed has been read.

The Diagnostic Tape Read op does not interlock the CPU. Processing
continues. If this op is being used to determine the existence of a tape
mark, and the program depends on recognition of this character, the
system must be interlocked. This can be accomplished by coding a
test-for-tape-error just prior to the point in the program dependent on
the tape mark condition. The Branch if Tape Error instruction camnot
be executed until the IRG is reached.

The Tape Error indicator will be turned on if the record being bypassed
was not in the parity dictated by the A-address of the diagnostic tape

op. The letter B in the ten's position of the A-address of the tape
instruction specifies odd tape parity, while the letter U specifies even
tape parity. Note: do not confuse tape parity with processing unit parity.

J-4

(I-5)

G

Miscellaneous Tape Notes

Tape Load Operation using Tape Load Key

A GM/WM in core will not stop a tape-load operation when
initiated from the tape-load key. This operation stops only
when an IRG is sensed. Any characters (including a group

mark with a word mark) will be erased during the read portion

of a tape-load.

Tave Read Instruction

A missing group mark with a word mark at the end of a tape
read-in area can cause a large portion of core storage to be
blanked out. The tape op will be terminated in this case by
the IRG.

Tape unit rewinding should be included in the housekeeping
rcutine. This insures that all tapes being used for the job
will begin at lecad point.

Addressing GM/WM when Writing Tace

If a tape-write instruction is given to write a GM/WM only,
the tape unit will create an IRG of 1 1/2 inches instead of the
usual 3/4 inch gap. The tape error latch will be turned on.

A backspace command at this point in the program will cause
the tape unit to back up over the wide IRG as well as the last
record written {not the GM/WM, which does not'gc on tape).

Note: Depending upon the series of the system, the above
operation may cause the entire system to interlock, and
will require that the start reset key be pressed.

In order to assure that a valid tape mark has been written on
tape, use the following routine:

J-5

Label o Operand.
WRTTM WTM 3
BSP 3
RT 3, INPUT
BEF EOJ
B WRTTM

(J-6) Noise Reccrds

A noise record may be read into memory. There are several approaches
to determining if a noise reccrd has been read.

1. Since a noise record can be 1 to 12 characters, plan each tape
file so that no valid tape record is less than 14 characters.

2. Use a string of special characters in positicns 1-14 of the tape
read in area. After a read, check for their presence tc indicate
a noise record.

3. Clear the entire noise area after a noise record is found.

4. Set a GMWM one positicn past where the GM should fall in a
read tape area. Leave the GM position blank. After a read,
check for the CM as a check for wrong length (long or short)
tape record. Blank out the generated GM after a good tape
read.

J-6

(T-7) Read Tape Mark Effect

When a tape mark is read, it not only gives an EOR indication, but L

also reads into storage. It is followed by a group mark. This GM
may read in on top of an existing word mark, creating a GMWM. Any
End-of-File routine must include a tape read-in area-clear routine

as lustrated in a previous section. Reset any word marks for subse-
quent tape read operations, if required.

Note: On a tape-error transmission, parity error constituting a group
mark may be left in storage following the read op. It is advisable to
clear the read area to eliminate this group mark, before the next read
try is attempted. This operation will use process time during which the
machine is waiting for the TU to complete a backspace, so no actual
time will be lost.

(7-8) Skip Tape and Erase Instruction

This instruction -~ SKP 3, is effective for the next tape write op or
tape mark write op. The latch is not reset by a rewind, rewind-unload,
or backspace command. Use care to insure that this instruction is
executed before the tape is backspaced or rewound. Otherwise, the
first write command for that drive after the backspace or rewind will
cause a skip and erase to take place. This could cause difficulty on the
next use of that tape drive, if SKP is used at end of job.

Ordinarily, this is of little consequence since the automatic load-point
skip will take place anyway.)

J-17

(3-9) Tape Transmission Error and End of Reel Indicators

There is only one tape error latch. It is set on if a tape read
or tape write error occurs on any tape drive. This latch can
be tested and reset by the Branch if Tape Error instruction --
BER 1. The tape error latch is also reset at the beginning
of any tape command for any tape drive, If the tape error is
not tested before the next tape op, the error condition is lost.

Each tape drive has its own End of Reel latch. This latch is
set on when either an end-of-reel sticker (reflective spot) is
sensed while writing, or when a tape mark character (BCD
code 8,4, 2,1) is readas the first character of a tape record.
This latch can be reset by the Branch if End of File or Reel
instruction -- BEF III, or by the manual unload push button
on the particular drive having the end-of-reel condition.
(The Tape Indicate light will be lighted on this drive.)

A tape drive must be in Select and Ready status to allow a test
for end of reel. Therefore, programming caution must be used
to insure that an EOR test is associated with the proper tape
drive. Any tape command referring to a specific drive places
that drive in select status. Ready status infers that tape is
loaded in the drive, and the unit is otherwise physically ready
(ready light is on).

The end of reel indicator will be turned cn in a tape unit when
either a reflective sticker is encountered during a tape write
op, or when a tape mark (BCD code 8, 4, 2, 1) is read as the
first character of a tape record. This means that any multi-
character record having a tape mark as its first character,
even though this record may be a noise record, will turn on the
end of reel indicator.

Therefore, it is important to test for a tape transmission error
before testing for an end of reel condition. Note, however,

that the EOR indicator is only reset by the Branch if End of
Reel instruction, and.not by the next tape op, as is the case
with the tape error latch. Therefore the test for EOR must be
made while this drive is still selected. This is usually accom-
plished by branching back to the ECR test following the comple-
tion of the tape error subroutine, or if no error existed, going
directly to the EOR test which follows the tape error test
instruction: ’

J-8

Label Op_ Operand (J-11) Operation of 729 Tape Drives

T 3, INPUT

BER XXX Tape Mounting
EORTES BEF YYY

NSI 1. Allow about three feet of magnetic tape to hang freely from the

. reel that you are going to mount. Place reel on drive and press

firmly to insure that the reel is properly seated. Tighten the

. reel on the drive by turning the knob clockwise until it becomes

XXX - difficult to turn.

- - 2. Thread the magnetic tape through the guides and rollers
- insuring that the glossy side of the tape is up when passing
B EORTES under the read-write head and that the tape is not twisted.

3. Place the end of the tape on the right reel, hold the reel release
button down, and wind the tape on the reel until the reflective
spot passes under and to the right of the read-write head.

4. Close the front glass door and press the keys in the following
order:
(J-10) Trailer Nines Records for End of File Recognition
a. Reset
b. Load Rewind
The use of a trailer record with a control field consisting of all nines c. Start

for each input tape file will generally eliminate the need for spzcial
end of file switches in the various comparison routines. This nines
record may either be read in from tape or may be generated in core
Storage by the program when an end of file condition is recognized.

o

Insure that you have the proper density setting.

Tape Unloadin

1. Press the following keys:
a. Reset
b. Load Rewind
2. After the tape has rewound, press:
a. Unload
3. Depress the reel release button and manually rewind the tape

on the left reel. Loosen the knob and remove reel.

J-9 J-10

{J-12) Operation of 7330 and 7335 Tape Drives

5.
The 7330 and 7335 read-write head must be lowered manually
by the use of a black plastic handle located at the head.
The 7330 and 7335 tape drive should be prepared for operation
using the following sequence of steps:
6.
a. Open center cover and right column door.
b. Thread the tape through the guides and rollers.
c. Wind tape around the take-up reel; use reel release
button.
d. Wind load point past head. Leave no slack in the tape.
e. Close the doors on the horizontal vacuum columns.
i, Lower the read-write head with the reel release

button depressed.

J. Release reel release button until vacuum comes up.

h. Depress reel release button and turn left reel clockwise
and right reel counter-clockwise to load tape in columns.

i. Clese door.

iR Press reset, low speed rewind and start buttons.

If the tape is loaded into the vacuum columns before the doors
on the columns are closed, the tape may be pinched.

Make sure that all tapé drives are unloaded (read-write head
up) before turning off power to the system. If this is not done,
blown fuses may result.

The 7330 and 7335 is sensitive to the lateral positioning of the
aluminun load point strip. The end of reel strip is positioned
toward the rear of the width of the tape. If the load point strip
is not positioned forward enough, the 7330 and 7335 will recog-
nize it as end of reel indication and cause the appropriate
indicator to be turned on.

J-11

It should be noted once again that a "rewind" instruction
causes a low speed rewind. "Rewind and Unload" causes

a high speed rewind. The choice of the two must depend on
program requirements. If "Unload" is used, to reload the
tape must be reloaded into the vacuum columms, the read-
write head lowered and the appropriate buttons reset.

It is possible to improperly thread the tape on these drives
and, outwardly, the drives operate properly. If the tape is
read back with the tape still incorrectly threaded, it will work
well. However, the tape camnot be read again on a 729, 7330,
or 7335 with the tape threaded properly.

J-12

(7-13 Tape Handling

Maguetic tape must be protected from dust and dirt; fdreign particles
can reduce the intensity of reading and recording pulses by increasing
the gap between the tape and the head.

1.

Keep tape in a dust-proof container whenever it is not in use on
a tape unit. During loading, take the tape directly from the
container; after unloading, place the tape directly in the con-
tainer.

While the tape is on the machine, keep the container closed and

put it where it is not exposed to dust or dirt.

Store tapes in an elevated cabinet away from paper or card dust to
minimize the transfer of dust from the outside of the containers
to the reel during loading or unloading.

Do not use the top of the tape unit as a working area. Placing
material on top of the units exposes it to heat and dust from the
blowers and may interfere with cooling the tape unit.

When identifying tape reels, use a material that can be removed
without leaving a residue. Adhesive stickers, easily applied
and removed, are satisfactory. They can be prepared in
advance and applied during the loading procedure. Never alter
identification by changing labels with an eraser.

Place load points and reflective spot on tapes with care. Pro-
perly align and press them tightly on the tape with the back of the
fingernail, preferably while the tape is loaded on & unit. If it is
done away from the unit, keep unrolled tape off the floor and
away from dust.

Inspect containers neriodically; remove accumulated dust by
washing with a household detergent.

When necessary to clean tape, wipe it gently with a clean, lint-
free cloth moistened with IBM tape transport cleaner. Do not
do this with H. D. tape.

Exercise extreme care when removing the file protection ring.
Under no circumstances should the ring be removed while the
tape 1s loaded in the columns.

Recorded information comes within . 020" of the edge of the tape.
Proper operation relies on the edges being free from nicks and kinks.

L.

Reels should be handled near the hub whenever possible. If a
reel is difficult to remove, break the bond between the reel and
the hub by placing the palm of the hands on the periphery of

the reel and rotating it. Never rock the reel by grasping the
outer edge.

Carefully avoid pinching reels or contacting the exposed edge
of the tape.

When installing the reels, push them firmly against the stop
on the mounting hub to insure good alignment.

Take special precautions to be sure the hub is tightened after
the reel has been mounted.

When placing the tape on the take-up reel, carefully align
t..e tape to prevent damaging the edge on the first few turns.

When winding the tape to load point, rotate the machine reel
with the finger near the hub and on the reel. Rotating the reel
with the finger in the cut out, nicks or curls the guiding edge
of the tape.

Always place sponge rubber grommets or special clips on
stored reels to prevent the free end from unwinding in the
container.

If tape breaks, divide the reel into two smaller reels. Splicing
is not recommended. If necessary to make a temporary splice
to recover information, be sure to use special low cold flow
splicing tape (Customer Engineering supply item).

Dropping a reel can easily damage both reel and tape. Use of

a reel and tape after they have been dropped is usually unsatis-
factory.

J-14

10. Never throw or mishandle reels, even while they are protected
in their containers.

11. Allow the tape unit to complete the unload sequence before
opening the door.

Magnetic tape, especially acetate tape, is sensitive to changes in
humidity and temperature. Take the following precautions:

1. If possible, store tape where it is to be used (in the computer
room). Tape storage near the tape units reduces handling and
variations in atmospheric conditions.

2. The atmosphere should be controlled between the following
limits:

Relative humidity 40% to 60%
Temperature 85" to80 T

3. If tape must be removed from the computer room atmosphere,
hermetically seal it in a plastic bag. If tape is not hermetically
sealed then, it must be returned before reuse and allowed to
remain in the computer room atmosphere for a time equal to
the time it was away from the room. Twenty-four hour condi-
tioning is necessary if the tape was removed for more than 24
hours.

When shipping magnetic tage, the following procedure is advisable:

1. Pack the tape and reel securely in a dust proof container.

2. Hermetically seal the container in a plastic bag. (Ordinary
plastic bags that can be sealed with a hot iron should be availa-

ble from local merchants.)

3. Obtain additional support by enclosing containers in individual
stiff cardboard shipping boxes.

For long-term storage, take the following precautions:

1. Provide proper mechanical support for the reels by using the
dust proof containers.

2. Enclose the reel and container in a hermetically-sealed
moisture-proof plastic bag.

3. Store tape in an area of constant temperature (between 40 and
120" F is satisfactory). Either freezing or excessively hot
temperatures could harm the tape.

If a tape reel is dropped, the reel may be broken or bent, the edge of
the magnetic tape itself may be crimped, and the magnetic tape may
be soiled.

The tape should immediately be inspected. Breaking or bending can
usually be verified by visual inspection. Bending can also be verified
by mounting the reel on the hub of the tape frame. If the reel is bent
or broken, it should not be used; the magnetic tape, however, may
be serviceable and can be wound on another reel.

If the edge of the tape is crimped, steps to be taken depend on whether
it contains essential information. If the tape contains no essential
information, discard the footage with the crimped edge. If the tape
contains important information, reconstruct it through tape-to-printer
or other machine operation. If this fails, the records in question must
be recreated from the original input or control data.

Any time a tape reel has been dropped, clean the tape and reel
thoroughly.

If visual inspection fails to uncover any evidence of breaking or bend-
ing of the reel, or crimping or other damage to the magnetic tape,
assume that the tape is in good operating condition. If possible, make
a test to verify that the tape operates properly before using it on subse-
quent runs.

The following are points of general tape-handling information:

1. Senior cperators should always take special precautions to
follow the tape handling recommendations to show, by example,
the care required to insure good performance.

2. Replace any tape arriving at the customer's installation in un-
usable condition and return the faulty tape to the factory. To
aid the factory in its inspection, ship the tape according to the
shipping instructions outlined in this section,

3. Use discretion about smoking in the vicinity of tape because
smoking adds to the dirt problem. Also, a hot ash could cause
seriocus trouble with a reel of tape. .

Mylar magnetic tape should be handled in the same way as acetate tape.
However, if Mylar tape is removed from the computer room atmosphere
for short periods (not in excess of 3 months), it is not necessary to
hermetically seal the tape nor to recondition it after return to the com-
puter room atmosphere. For long-term storage, Mylar tape should be
hermetically sealed to guard against dirt, dust, and excessive mois-
ture.

WARNING: Never store reels of tape near magnetic fields.

(T-14) Tape-Transport Cleaning for 729 Tape Drives

The tape drive transport mechanism should be cleaned at least once
every eight hours, or every ten full reel passes, whichever occurs
first.

The materials required for cleaning the transport are available in a
tape drive cleaning kit, P/N 352465. DANGER. Caution should be
exerclised whenever the transport cleaner is used.

Prolonged or repeated contact of the tape transport cleaner with the
user's skin should be avoided.

Split Guides

Use the brush and thoroughly remove all oxide accumulation on the
surface and between the two ceramic elements.

"H" Shield

The underside of the "H" feed-thru shield should be cleaned with a
lint- free cloth or pad mositened with the approved cleaning fluid.

Rewind Idler Pulley

Clean with a lint-free cloth or pad moistened with the approved clean-
ing fluid. :

Drive Capstan
Do not clean the drive capstan while it is rotating under power. Use

the brush handle wrapped with the cleaning cloth and scrub vigorously.
The capstan must be rotated manually.

Nylon Pulley

Use a lint-free cloth or pad and the approved cleaning fluid. A motion
around the circumference of the pulley should be used. Do not rub too
hard in any one spot.

Stop Capstan_

Use a lint-free cloth or pad moistened with the apbroved cleaning
fluid to clean this item. Do not rub where the nylon phlley contacts it.

Cleaner Blade

Use a lint-free cloth or pad moistened with the approved cleaning fluid
to clean this area. Do not rub hard on the cleaner blade.

Read/Write Head

Use a lint-free cloth or pad moistened with the approved cleaning
fluid to clean the head. Scrub in the direction of tape movement,
never across the head.

Vacuum Columns

The columns should be cleaned weekly with the approved cleaning fluid.

DO NOT, under any circumstances, use any metal instruments to clean
the columns, Frequency of cleaning may need to be changed, depending
on the type of tape and the amount of tape passed.

Cleaning the transport area should pe done using a minimum amount of
cleaning fluid, The cleaning cloth or pad should be damp and not
saturated with cleaning fluid when cleaning. Occasionally, loose
fibers will detach from the cleaning cloth or applicators during
cleaning. A visual inspection should be made to be certain that none of
these loose fibers remain in the transport area after cleaning.

J-19

	001
	002
	003
	A-01
	A-02
	A-03
	A-05
	B-00
	B-01
	B-02
	B-04
	B-06
	B-07
	B-09
	B-11
	B-13
	B-15
	B-17
	B-19
	B-21
	B-23
	B-25
	B-27
	B-29
	B-31
	B-33
	B-35
	B-37
	B-39
	B-41
	B-43
	B-45
	B-47
	B-49
	B-51
	B-53
	B-55
	B-57
	B-59
	B-61
	B-62
	B-64
	B-65
	B-67
	B-69
	C-02
	C-03
	C-05
	C-06
	C-07
	C-09
	C-11
	C-12
	D-00
	D-02
	D-04
	D-06
	D-07
	D-08
	D-10
	D-12
	D-13
	E-00
	E-02
	E-03
	E-05
	E-07
	E-09
	F-01
	F-03
	F-05
	F-07
	F-09
	G-00
	G-02
	G-04
	G-05
	H-00
	H-02
	H-04
	H-06
	H-07
	I-00
	I-02
	I-04
	I-05
	I-07
	I-09
	I-10
	I-12
	I-14
	I-16
	I-18
	I-20
	I-22
	J-01
	J-03
	J-05
	J-07
	J-09
	J-11
	J-13
	J-15
	J-17
	J-19

